Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical interaction between a dielectric tip and a nanometric lattice: implications for near-field microscopy

Not Accessible

Your library or personal account may give you access

Abstract

We make a theoretical analysis of the interaction of the field transmitted by a subwavelength tip and a two-dimensional subwavelength lattice. Such a model provides a new insight into the resolution achievable by near-field microscopy and confirms the experimental results obtained recently. In the present model the probe, characterized by its electric dipolar susceptibility, is assumed to be locally spherical, and the representation of the sample is based on a discrete description of the matter. This permits separation of the electric field detected by the probe after reflection into two different parts that describe both the continuum character and the corrugation of the surface. Numerical results performed on a two-dimensional lattice are similar to those obtained by atomic force microscopy and exhibit specific behavior such as a strong dependence on the polarization of the incident field.

© 1990 Optical Society of America

Full Article  |  PDF Article
More Like This
Model for reflection near field optical microscopy

Christian Girard and Michel Spajer
Appl. Opt. 29(26) 3726-3733 (1990)

Polarization effects in the optical interaction between a nanoparticle and a corrugated surface: implications for apertureless near-field microscopy

A. Madrazo, R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet
J. Opt. Soc. Am. A 15(1) 109-119 (1998)

Self-consistent study of dynamical and polarization effects in near-field optical microscopy

C. Girard and X. Bouju
J. Opt. Soc. Am. B 9(2) 298-305 (1992)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (54)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved