Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fabrication and flatness error analysis of a low-stepped mirror in a static Fourier transform infrared spectrometer

Not Accessible

Your library or personal account may give you access

Abstract

In this study, we propose a Fourier transform infrared spectrometer based on stepped mirrors, which realize static. As the core component of the spectrometer, the low-stepped mirror’s structural parameters significantly affect the instrument performance. In order to successfully fabricate a low-stepped mirror with a large area and submicrometer height, we propose a method involving multiple depositions accompanied by a 50% reduction in thickness at every iteration, which can precisely control the accuracy, consistency, and uniformity of the step height. After that, we fabricate a low-stepped mirror consisting of 32 stages and with a step height of 625 nm. Through theoretical calculation and simulation analysis, the influence of the step’s flatness error on the recovery spectrum is obtained. By increasing the substrate thickness of the stepped mirror, we can reduce the stress of the thin film. We perform experiments using the low-stepped mirror. The low-stepped mirror was incorporated into the Fourier transform infrared spectrometer, and we performed experiments to obtain the spectrum of acetonitrile liquid. The spectrogram of the acetonitrile is obtained by processing the interferogram.

© 2018 Optical Society of America

PDF Article
More Like This
Design and fabrication of step mirrors used in space-modulated Fourier transform infrared spectrometer

Ying Zheng, Jingqiu Liang, and Zhongzhu Liang
Opt. Express 21(1) 884-892 (2013)

Static Fourier transform mid-infrared spectrometer with increased spectral resolution using a stepped mirror

Michael H. Köhler, Michael Schardt, Michael Müller, Patrick Kienle, Kun Wang, Xingchen Dong, Carsten Giebeler, Benjamin R. Wiesent, Martin Jakobi, and Alexander W. Koch
OSA Continuum 3(8) 2134-2142 (2020)

Miniaturization of step mirrors in a static Fourier transform spectrometer: theory and simulation

Cong Feng, Bo Wang, Zhongzhu Liang, and Jingqiu Liang
J. Opt. Soc. Am. B 28(1) 128-133 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved