Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modified theory of physical optics

Open Access Open Access

Abstract

A new procedure for calculating the scattered fields from a perfectly conducting body is introduced. The method is defined by considering three assumptions. The reflection angle is taken as a function of integral variables, a new unit vector, dividing the angle between incident and reflected rays into two equal parts is evaluated and the perfectly conducting (PEC) surface is considered with the aperture part, together. This integral is named as Modified Theory of Physical Optics (MTPO) integral. The method is applied to the reflection and edge diffraction from a perfectly conducting half plane problem. The reflected, reflected diffracted, incident and incident diffracted fields are evaluated by stationary phase method and edge point technique, asymptotically. MTPO integral is compared with the exact solution and PO integral for the problem of scattering from a perfectly conducting half plane, numerically. It is observed that MTPO integral gives the total field that agrees with the exact solution and the result is more reliable than that of classical PO integral.

©2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Modified theory of physical optics approach to wedge diffraction problems

Yusuf Z. Umul
Opt. Express 13(1) 216-224 (2005)

Diffraction by a black half plane: Modified theory of physical optics approach

Yusuf Z. Umul
Opt. Express 13(19) 7276-7287 (2005)

Scattering from a cylindrical reflector: modified theory of physical optics solution

Uğur Yalçin
J. Opt. Soc. Am. A 24(2) 502-506 (2007)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Scattered fields from a perfectly conducting surface and an aperture continuation
Fig. 2
Fig. 2 Reflection geometry from a perfectly conducting half plane
Fig. 3.
Fig. 3. Transmission geometry for the modified theory of physical optics
Fig. 4.
Fig. 4. Regions for scattered fields in a perfectly conducting half plane
Fig. 5.
Fig. 5. Reflected and diffracted fields from perfectly conducting half plane (PO and exact solution)
Fig. 6.
Fig. 6. Reflected and diffracted fields from perfectly conducting half plane [MTPO (β = ϕ 0) and exact solution]
Fig. 7.
Fig. 7. Reflected and diffracted fields from perfectly conducting half plane (MTPO and exact solution)

Equations (66)

Equations on this page are rendered with MathJax. Learn more.

J es = n 1 × H t | S 1
J es = n 2 × H i | S 2 , J ms = n 2 × E i | S 2
n 1 = cos ( u + α ) t + sin ( u + α ) n
n 2 = cos ( v + α ) t sin ( v + α ) n
E t = E is + E rs
E is = μ 0 4 π S 2 n 2 × H i | S 2 e jk R 2 R 2 dS ' + 1 4 π S 2 × ( n 2 × E i | S 2 e jk R 2 R 2 ) dS '
E rs = μ 0 4 π S 1 n 1 × H t | S 1 e jk R 1 R 1 dS '
H t = H is + H rs
H is = 1 4 π S 2 × ( n 2 × H i | S 2 e jk R 2 R 2 ) dS ' + ε 4 π S 2 n 2 × E i | S 2 e jk R 2 R 2 dS '
H rs = 1 4 π S 1 × ( n 1 × H t | S 1 e jk R 1 R 1 ) dS '
H i = E i Z 0 ( e x sin ϕ 0 e y cos ϕ 0 ) e jk ( x cos ϕ 0 + y sin ϕ 0 )
E r = e z E r e jk ( x cos β y sin β )
E r = E i e jkx ' ( cos ϕ 0 cos β )
J MTPO = E i Z 0 [ cos u cos ( u + β + ϕ 0 ) ] e jkx ' cos ϕ 0 e z
J PO = e z 2 E i Z 0 sin ϕ 0 e jkx ' cos ϕ 0
J MTPO = 2 E i Z 0 sin ( β + ϕ 0 2 ) e jkx ' cos ϕ 0 e z
E rs = e z jk E i 2 π x ' = 0 z ' = e jkx ' cos ϕ 0 e jk R 1 R 1 sin ( β + ϕ 0 2 ) dx ' dz '
R 1 = ( x x ' ) 2 + y 2 + ( z z ' ) 2 .
c e jkchα = π j H 0 ( 2 ) ( kR )
E rs = e z k E i 2 x ' = 0 e jkx ' cos ϕ 0 H 0 ( 2 ) ( kR ) sin ( β + ϕ 0 2 ) dx '
E ieq = e z E i e jk ( x cos ϕ 0 y sin ϕ 0 )
H ieq = E i Z 0 ( e x sin ϕ 0 + e y cos ϕ 0 ) e jk ( x cos ϕ 0 y sin ϕ 0 )
J MTPO = 2 E i Z 0 sin ( β + ϕ 0 2 ) e jkx ' cos ϕ 0 e z
E is e z k E i 2 π e j π 4 x ' = 0 e jkx ' cos ϕ 0 e jk R 1 k R 1 sin ϕ 0 + β 2 dx '
E s = E rs + E is
E rs e z k E i 2 π e j π 4 x ' = 0 e jkx ' cos ϕ 0 e jk R 1 k R 1 sin ( β + ϕ 0 2 ) dx '
E t e z k E i 2 π e j π 4 ( x ' = 0 e jkx ' cos ϕ 0 e jk R 1 k R 1 sin ϕ 0 + β 2 dx ' x ' = 0 e jkx ' cos ϕ 0 e jk R 1 k R 1 sin ( β + ϕ 0 2 ) dx ' )
g ( x ' ) = ρ cos γ + x ' ( cos β cos ϕ 0 )
g x ' = ρ sin γ dx ' x ' sin β dx ' + cos β cos ϕ 0
γ = π β ϕ
ρ sin γ dx ' = x ' sin β dx '
β s = ϕ 0
g x ' s = cos β s cos ϕ 0 = 0
2 g x ' 2 | s = sin 2 ϕ 0 l
l = R 1 | s = ρ cos γ s
g ( x ' ) l + 1 2 sin 2 ϕ 0 l ( x ' x ' s ) 2
f ( x ' s ) ± k E i 2 π e j π 4 sin ϕ 0 kl
E r , i ± k E i sin ϕ 0 2 π e j π 4 e jkl kl e jk sin 2 ϕ 0 l ( x ' x ' 2 ) dx '
e y 2 2 dy = 2 π .
E r E i e jkρ cos ( ϕ + ϕ 0 )
E i E i e jkρ cos ( ϕ ϕ 0 )
E d e z 1 jk f ( 0 ) g ' ( 0 ) e jkg ( 0 )
g ( 0 ) = ρ ,
g ' ( 0 ) = ( cos ϕ + cos ϕ 0 )
f ( 0 ) = k E i 2 2 π e j π 4 cos ( ϕ ϕ 0 2 )
E rd = e z E i 2 2 π e jkρ cos ( ϕ ϕ 0 2 ) cos ϕ + cos ϕ 0 e j π 4
D rd = e j π 4 2 2 π cos ( ϕ ϕ 0 2 ) cos ϕ + cos ϕ 0
g ( 0 ) = ρ ,
g ' ( 0 ) = ( cos ϕ + cos ϕ 0 )
f ( 0 ) = k E i 2 2 π e j π 4 cos ( ϕ + ϕ 0 2 )
E id = e z E i 2 2 π e jkρ cos ( ϕ + ϕ 0 2 ) cos ϕ + cos ϕ 0 e j π 4
D id = e j π 4 2 2 π cos ( ϕ + ϕ 0 2 ) cos ϕ + cos ϕ 0
D t = D id + D rd = e j π 4 2 π cos ( ϕ ϕ 0 2 ) cos ( ϕ + ϕ 0 2 ) cos ϕ + cos ϕ 0
E TPO E i e jk ( x cos ϕ 0 + y sin ϕ 0 ) k E i 2 sin ϕ 0 0 e jkx ' cos ϕ 0 H 0 ( 2 ) ( k R 1 ) dx '
E MTPO | β = ϕ 0 k E i 2 ( x ' = 0 e jkx ' cos ϕ 0 H 0 ( 2 ) ( k R 1 ) sin ϕ 0 dx ' 0 e jkx ' cos ϕ 0 H 0 ( 2 ) ( k R 1 ) sin ϕ 0 dx ' )
E TMTPO = 1 2 [ E i ( e jkρ cos ( ϕ ϕ 0 ) e jkρ cos ( ϕ + ϕ 0 ) ) u ( π ϕ ) + E TPO + E R ]
u ( π ϕ ) = { 1 , ϕ π 0 , ϕ π
E t = 2 E i m = 1 e jm π 4 J m 2 ( ) sin m 2 ϕ sin m 2 ϕ 0
E MTPO k E i 2 π e j π 4 ( x ' = 0 e jkx ' cos ϕ 0 e jk R 1 k R 1 sin ϕ 0 + β 2 dx ' x ' = 0 e jkx ' cos ϕ 0 e jk R 1 k R 1 sin ( β + ϕ 0 2 ) dx ' )
H i = e z H i e jk ( x cos ϕ 0 + y sin ϕ 0 )
E i = Z 0 H i ( sin ϕ 0 e x + cos ϕ 0 e y ) e jk ( x cos ϕ 0 + y sin ϕ 0 )
H r = e z H r e jk ( x cos β y sin β )
E r = Z 0 H r ( sin β e x + cos β e y ) e jk ( x cos β y sin β )
H r e jkx ' cos β = H i e jkx ' cos ϕ 0
J MTPO = 2 H i [ e x cos β ϕ 0 2 e y sin β ϕ 0 2 ] e jkx ' cos ϕ 0
J PO = e x 2 H i e jkx ' cos ϕ 0
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.