Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Full-color three-dimensional microscopy by wide-field optical coherence tomography

Open Access Open Access

Abstract

We demonstrate a method of optical tomography for surface and sub-surface imaging of biological tissues, based on the principle of wide field optical coherence tomography and capable of providing full-color three-dimensional views of a tissue structure. Contour or tomographic images are obtained with an interferometric imaging system using broadband light sources. The interferometric images are analyzed in the three color channels and recombined to generate 3D microscopic images of tissue structures with full natural color representation. In contrast to most existing three-dimensional microscopy methods, the presented technique allows monitoring of tissue structures close to its natural color, which may be useful in physiological and pathological applications.

©2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultrahigh-resolution full-field optical coherence tomography

Arnaud Dubois, Kate Grieve, Gael Moneron, Romain Lecaque, Laurent Vabre, and Claude Boccara
Appl. Opt. 43(14) 2874-2883 (2004)

High-resolution full-field optical coherence tomography with a Linnik microscope

Arnaud Dubois, Laurent Vabre, Albert-Claude Boccara, and Emmanuel Beaurepaire
Appl. Opt. 41(4) 805-812 (2002)

Bond-selective full-field optical coherence tomography

Haonan Zong, Celalettin Yurdakul, Jian Zhao, Zian Wang, Fukai Chen, M. Selim Ünlü, and Ji-Xin Cheng
Opt. Express 31(25) 41202-41218 (2023)

Supplementary Material (18)

Media 1: AVI (1172 KB)     
Media 2: AVI (255 KB)     
Media 3: AVI (900 KB)     
Media 4: AVI (727 KB)     
Media 5: AVI (262 KB)     
Media 6: AVI (613 KB)     
Media 7: AVI (806 KB)     
Media 8: AVI (383 KB)     
Media 9: AVI (781 KB)     
Media 10: AVI (272 KB)     
Media 11: AVI (97 KB)     
Media 12: AVI (1913 KB)     
Media 13: AVI (479 KB)     
Media 14: AVI (149 KB)     
Media 15: AVI (923 KB)     
Media 16: AVI (647 KB)     
Media 17: AVI (218 KB)     
Media 18: AVI (924 KB)     

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Apparatus for color WFOCT. See text for details.
Fig. 2.
Fig. 2. Phase-shift interference imaging. Four quadrature phase interferograms and the extracted interference images are shown, as well as cross-sectional profiles of the interferograms.
Fig. 3.
Fig. 3. (a) The spectra of red, green, and blue LED’s. (b) The interference profiles of the LED’s vs. the axial distance z.
Fig. 4.
Fig. 4. Phase-shift interference imaging of a coin surface: (a) direct image of the object; (b) image of the object with reference wave; (c) contour image extracted by the phase-shift interference; (d) flat view of the accumulated contour images. (image volume=12 mm×9 mm×405 µm; voxels=640×480×82; voxel volume=19 µm×19 µm×5 µm)
Fig. 5.
Fig. 5. Color WFOCT of a painted coin surface. See text for details
Fig. 6.
Fig. 6. Color WFOCT movies of a painted coin surface: (a) (1.17MB) xysection images; (b) (0.26MB) xz-section images; (c) (0.90MB) 3D perspective views. (image volume=7.2 mm×7.2 mm×335 µm; voxels=480×480×67; voxel volume=15 µm×15 µm×5 µm)
Fig. 7.
Fig. 7. Monochrome WFOCT movies of a bee: (a) (0.73MB) xy-section images; (b) (0.26MB) xz-section images; (c) (0.64MB) 3D perspective views; (d) direct image of the specimen. (image volume=6.0 mm×7.8 mm×980 µm; voxels=400×520×99; voxel volume=15 µm×15 µm×10 µm)
Fig. 8.
Fig. 8. Color WFOCT movies of an insect wing: (a) (0.81MB) xy-section images; (b) (0.38MB) xz-section images; (c) (0.78MB) 3D perspective views; (d) direct image of the specimen. (image volume=7.2 mm×9.6 mm×810 µm; voxels=480×640×82; voxel volume=15 µm×15 µm×10 µm)
Fig. 9.
Fig. 9. Color WFOCT of a piece of apple skin. See text for details
Fig. 10.
Fig. 10. Color WFOCT movies of apple skin: (a) (0.27MB) xy-section images; (b) (0.10MB) xz-section images; (c) (1.90MB) 3D perspective views. (image volume=4.7 mm×4.7 mm×170 µm; voxels=313×313×34; voxel volume =15 µm×15 µm×5 µm)
Fig. 11.
Fig. 11. Color WFOCT movies of a leaf: (a) (0.48MB) xy-section images; (b) (0.15MB) xz-section images; (c) (0.92MB) 3D perspective views. (image volume=6.3 mm×6.3 mm×145 µm; voxels=420×420×30; voxel volume =15 µm×15 µm×5 µm)
Fig. 12.
Fig. 12. Color WFOCT movies of a leaf: (a) (0.65MB) xy-section images; (b) (0.22MB) xz-section images; (c) (0.93MB) 3D perspective views. (image volume=7.2 mm×7.2 mm×190 µm; voxels=480×640×39; voxel volume =15 µm×15 µm×5 µm)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = I O ( x , y ) + I B ( x , y ) + I R ( x , y ) + 2 I O ( x , y ) I R ( x , y ) cos [ φ i + φ ( x , y ) ]
I 0 = I O + I B + I R + 2 I O I R cos φ
I π 2 = I O + I B + I R 2 I O I R sin φ
I π = I O + I B + I R 2 I O I R cos φ
I 3 π 2 = I O + I B + I R + 2 I O I R sin φ
I O = ( I 0 I π ) 2 + ( I π 2 I 3 π 2 ) 2 16 I R
φ = tan 1 I 3 π 2 I π 2 I 0 I π
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.