Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Gaussian pulsed beams with arbitrary speed

Open Access Open Access

Abstract

It is shown that the homogeneous scalar wave equation under a generalized paraxial approximation admits of Gaussian beam solutions that can propagate with an arbitrary speed, either subluminal or superluminal, in free-space. In suitable moving inertial reference frames, such solutions correspond either to standard stationary Gaussian beams or to “temporal” diffracting Gaussian fields.

©2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Paraxial localized waves in free space

Ioannis M. Besieris and Amr M. Shaarawi
Opt. Express 12(16) 3848-3864 (2004)

Finite-energy spatiotemporally localized Airy wavepackets

Ioannis M. Besieris and Amr M. Shaarawi
Opt. Express 27(2) 792-803 (2019)

Localized subluminal envelope pulses in dispersive media

Stefano Longhi
Opt. Lett. 29(2) 147-149 (2004)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (19)

Equations on this page are rendered with MathJax. Learn more.

t 2 ψ + 2 ψ z 2 1 c 2 2 ψ t 2 = 0 ,
ψ ( x , y , z , t ) = Φ ( x , y , z , v t ) ext [ i ω ( t z c ) ] .
t 2 Φ + [ 1 ( v c ) 2 ] 2 Φ ξ 2 2 ik ( 1 v c ) Φ ξ = 0 ,
Φ ( ρ , ξ ) = d Q F ( Q ) J 0 ( k ( Q ) ρ ) exp ( i Q ξ ) ,
k ( Q ) = Q ( 1 v c ) [ 2 k Q ( 1 + v c ) ] ,
Φ ( ρ , ξ ) = d Q F ( Q ) J 0 ( 2 k Q ( 1 v c ) ρ ) exp ( i Q ξ ) .
t 2 Φ 2 ik ( 1 v c ) Φ ξ = 0 .
Φ ( ρ , ξ ) = 1 ( ξ 0 i ξ ) n + 1 L n 0 ( k 1 v c ρ 2 2 ( ξ 0 i ξ ) ) exp [ k 1 v c ρ 2 2 ( ξ 0 i ξ ) ] ,
F ( Q ) = { 1 n ! Q n exp ( ξ 0 Q ) Q > 0 0 Q < 0
F ( Q ) = { 1 n ! ( Q ) n exp ( ξ 0 Q ) Q < 0 0 Q > 0
ψ ( ρ , z , t ) = 1 ξ 0 i ( z vt ) 0 d ω G ( ω ) exp [ ω s ( ρ , z , t ) ] ,
s ( ρ , z , t ) = 1 v c 2 c ρ 2 ξ 0 i ( z vt ) i ( t z c ) .
G ( ω ) = { i Γ ( α ) ( ω ω 0 ) α 1 exp ( ω ω 0 Δ ω ) ω > ω 0 0 ω < ω 0 ,
ψ ( ρ , z , t ) = exp [ ω 0 s ( ρ , z , t ) ] ξ 0 i ( z vt ) × 1 [ s ( ρ , z , t ) + 1 Δ ω ] α .
ψ ( ρ , z , t ) = 0 d ω d Q F ( Q , ω ) J 0 ( k ( Q , ω ) ρ ) exp [ it ( ω Qv ) iz ( ω c Q ) ] ,
{ x = x y = y z = γ ( z + Vt ) t = γ ( t + V c 2 z )
ψ ( x , y , z , t ) = Φ ( x , y , γ ( 1 vV c 2 ) z γ ( v V ) t ) exp [ i ω ( t z c ) ] ,
ψ ( x , y , z , t ) = Φ ( x , y , z γ ) exp [ i ω ( t z c ) ] ,
ψ ( x , y , z , t ) = Φ ( x , y , vt γ ) exp [ i ω ( t z c ) ] ,
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.