D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[Crossref]
[PubMed]
R. R. Ansari, S. Bockle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9, 103–115 (2004).
[Crossref]
[PubMed]
F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003).
[Crossref]
[PubMed]
N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms -effect of collection geometry,” Opt. Comm. 222, 93–100 (2003).
[Crossref]
K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[Crossref]
[PubMed]
S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref]
[PubMed]
X. Wang, G. Yao, and L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002).
[Crossref]
[PubMed]
B. Kaplan, G. Ledanois, and B. Drévillon, “Mueller Matrix of dense polystyrene latex sphere supsensions: measurements and Monte Carlo simulations,” Appl. Opt. 40, 2769–2777 (2001).
[Crossref]
M. Moscoso, J. B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A 18, 948–960 (2001).
[Crossref]
J. R. Mourant, T. M. Johnson, and J. P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40, 5114–5123 (2001).
[Crossref]
S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000).
[Crossref]
I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362 (2000).
[Crossref]
R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5, 5–16 (2000).
[Crossref]
[PubMed]
V. Sankaran, J. T. Walsh, and D. J. Maitland, “Polarized light propagation through tissue phantoms containing densely packed scatterers,” Opt. Lett. 25, 239–241 (2000).
[Crossref]
A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarsmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[Crossref]
V. Sankaran, K. Schönenberger, J. T. Walsh, and D. J. Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt. 38, 4252–4261 (1999).
[Crossref]
B. D. Cameron and G. L. Coté, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–1227 (1997).
[Crossref]
[PubMed]
M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, “Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid,” Opt. Comm. 132, 410–416 (1996).
[Crossref]
L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed. 47, 131–146 (1995).
[Crossref]
M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–166 (1990).
[Crossref]
J. M. Steinke and A. P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. B 5, 813–822 (1988).
[Crossref]
A. J. Welch, G. Yoon, and M. J. van Gemert, “Practical models for light distribution in laser-irradiated tissue,” Lasers Surg Med 6, 488–493 (1987).
[Crossref]
[PubMed]
W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[Crossref]
[PubMed]
W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[Crossref]
[PubMed]
R. R. Ansari, S. Bockle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9, 103–115 (2004).
[Crossref]
[PubMed]
M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, “Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid,” Opt. Comm. 132, 410–416 (1996).
[Crossref]
R. R. Ansari, S. Bockle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9, 103–115 (2004).
[Crossref]
[PubMed]
C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983), chap. 2, pp. 46–56.
B. D. Cameron and G. L. Coté, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–1227 (1997).
[Crossref]
[PubMed]
R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5, 5–16 (2000).
[Crossref]
[PubMed]
B. D. Cameron and G. L. Coté, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–1227 (1997).
[Crossref]
[PubMed]
D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[Crossref]
[PubMed]
D. Côté and I. A. Vitkin, “Pol-MC: a three-dimensional polarization-sensitive Monte Carlo implementation for light propagation in tissue,” Available at http://www.novajo.ca/ont-canc-inst-biophotonics/.
T. A. Germer, “SCATMECH: Polarized Light Scattering C++ Class Library,” Available at http://physics.nist.gov/scatmech.
N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms -effect of collection geometry,” Opt. Comm. 222, 93–100 (2003).
[Crossref]
A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarsmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[Crossref]
N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms -effect of collection geometry,” Opt. Comm. 222, 93–100 (2003).
[Crossref]
K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[Crossref]
[PubMed]
I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362 (2000).
[Crossref]
C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983), chap. 2, pp. 46–56.
S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref]
[PubMed]
L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed. 47, 131–146 (1995).
[Crossref]
N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms -effect of collection geometry,” Opt. Comm. 222, 93–100 (2003).
[Crossref]
S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref]
[PubMed]
V. Sankaran, J. T. Walsh, and D. J. Maitland, “Polarized light propagation through tissue phantoms containing densely packed scatterers,” Opt. Lett. 25, 239–241 (2000).
[Crossref]
V. Sankaran, K. Schönenberger, J. T. Walsh, and D. J. Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt. 38, 4252–4261 (1999).
[Crossref]
W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[Crossref]
[PubMed]
R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5, 5–16 (2000).
[Crossref]
[PubMed]
N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms -effect of collection geometry,” Opt. Comm. 222, 93–100 (2003).
[Crossref]
M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–166 (1990).
[Crossref]
W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[Crossref]
[PubMed]
S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref]
[PubMed]
R. R. Ansari, S. Bockle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9, 103–115 (2004).
[Crossref]
[PubMed]
V. Sankaran, J. T. Walsh, and D. J. Maitland, “Polarized light propagation through tissue phantoms containing densely packed scatterers,” Opt. Lett. 25, 239–241 (2000).
[Crossref]
V. Sankaran, K. Schönenberger, J. T. Walsh, and D. J. Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt. 38, 4252–4261 (1999).
[Crossref]
A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarsmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[Crossref]
J. M. Steinke and A. P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. B 5, 813–822 (1988).
[Crossref]
M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, “Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid,” Opt. Comm. 132, 410–416 (1996).
[Crossref]
N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms -effect of collection geometry,” Opt. Comm. 222, 93–100 (2003).
[Crossref]
J. M. Steinke and A. P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. B 5, 813–822 (1988).
[Crossref]
M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, “Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid,” Opt. Comm. 132, 410–416 (1996).
[Crossref]
H. C. van de Hulst, Light scattering by small particles (Dover, New York, 1981).
A. J. Welch, G. Yoon, and M. J. van Gemert, “Practical models for light distribution in laser-irradiated tissue,” Lasers Surg Med 6, 488–493 (1987).
[Crossref]
[PubMed]
D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[Crossref]
[PubMed]
K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[Crossref]
[PubMed]
I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362 (2000).
[Crossref]
M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, “Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid,” Opt. Comm. 132, 410–416 (1996).
[Crossref]
D. Côté and I. A. Vitkin, “Pol-MC: a three-dimensional polarization-sensitive Monte Carlo implementation for light propagation in tissue,” Available at http://www.novajo.ca/ont-canc-inst-biophotonics/.
V. Sankaran, J. T. Walsh, and D. J. Maitland, “Polarized light propagation through tissue phantoms containing densely packed scatterers,” Opt. Lett. 25, 239–241 (2000).
[Crossref]
V. Sankaran, K. Schönenberger, J. T. Walsh, and D. J. Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt. 38, 4252–4261 (1999).
[Crossref]
L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed. 47, 131–146 (1995).
[Crossref]
X. Wang, G. Yao, and L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002).
[Crossref]
[PubMed]
M. Mehrübeoglu, N. Kehtarnavaz, S. Rastegar, and L. V. Wang, “Effect of molecular concentrations in tissue-simulating phantoms on images obtained using diffuse reflectance polarimetry,” Opt. Express 3, 286–297 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-7-286.
[Crossref]
[PubMed]
A. J. Welch, G. Yoon, and M. J. van Gemert, “Practical models for light distribution in laser-irradiated tissue,” Lasers Surg Med 6, 488–493 (1987).
[Crossref]
[PubMed]
M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–166 (1990).
[Crossref]
M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–166 (1990).
[Crossref]
A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarsmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[Crossref]
A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarsmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[Crossref]
A. J. Welch, G. Yoon, and M. J. van Gemert, “Practical models for light distribution in laser-irradiated tissue,” Lasers Surg Med 6, 488–493 (1987).
[Crossref]
[PubMed]
L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed. 47, 131–146 (1995).
[Crossref]
J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[Crossref]
[PubMed]
X. Wang, G. Yao, and L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002).
[Crossref]
[PubMed]
J. R. Mourant, T. M. Johnson, and J. P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40, 5114–5123 (2001).
[Crossref]
F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003).
[Crossref]
[PubMed]
S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000).
[Crossref]
B. Kaplan, G. Ledanois, and B. Drévillon, “Mueller Matrix of dense polystyrene latex sphere supsensions: measurements and Monte Carlo simulations,” Appl. Opt. 40, 2769–2777 (2001).
[Crossref]
W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
[Crossref]
[PubMed]
V. Sankaran, K. Schönenberger, J. T. Walsh, and D. J. Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt. 38, 4252–4261 (1999).
[Crossref]
L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Biomed. 47, 131–146 (1995).
[Crossref]
W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5, 259–265 (1982).
[Crossref]
[PubMed]
B. D. Cameron and G. L. Coté, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–1227 (1997).
[Crossref]
[PubMed]
R. R. Ansari, S. Bockle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9, 103–115 (2004).
[Crossref]
[PubMed]
S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref]
[PubMed]
D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[Crossref]
[PubMed]
R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5, 5–16 (2000).
[Crossref]
[PubMed]
A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H.-J. Schwarsmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[Crossref]
K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[Crossref]
[PubMed]
J. M. Steinke and A. P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. B 5, 813–822 (1988).
[Crossref]
M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–166 (1990).
[Crossref]
A. J. Welch, G. Yoon, and M. J. van Gemert, “Practical models for light distribution in laser-irradiated tissue,” Lasers Surg Med 6, 488–493 (1987).
[Crossref]
[PubMed]
N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, “Depolarization of light in tissue phantoms -effect of collection geometry,” Opt. Comm. 222, 93–100 (2003).
[Crossref]
M. P. Silverman, W. Strange, J. Badoz, and I. A. Vitkin, “Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid,” Opt. Comm. 132, 410–416 (1996).
[Crossref]
I. A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media,” Opt. Eng. 39, 353–362 (2000).
[Crossref]
V. Sankaran, J. T. Walsh, and D. J. Maitland, “Polarized light propagation through tissue phantoms containing densely packed scatterers,” Opt. Lett. 25, 239–241 (2000).
[Crossref]
J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
[Crossref]
[PubMed]
D. R. Lide, (ed.), CRC Handbook of Chemistry and Physics (CRC Press LLC, Boca Raton, Florida, 1998), pp. 3–12,8–64., 79th edn.
C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983), chap. 2, pp. 46–56.
D. Côté and I. A. Vitkin, “Pol-MC: a three-dimensional polarization-sensitive Monte Carlo implementation for light propagation in tissue,” Available at http://www.novajo.ca/ont-canc-inst-biophotonics/.
T. A. Germer, “SCATMECH: Polarized Light Scattering C++ Class Library,” Available at http://physics.nist.gov/scatmech.
H. C. van de Hulst, Light scattering by small particles (Dover, New York, 1981).