Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical bistable switching action of Si high-Q photonic-crystal nanocavities

Open Access Open Access

Abstract

We have demonstrated all-optical bistable switching operation of resonant-tunnelling devices with ultra-small high-Q Si photonic-crystal nanocavities. Due to their high Q/V ratio, the switching energy is extremely small in comparison with that of conventional devices using the same optical nonlinear mechanism. We also show that they exhibit all-optical-transistor action by using two resonant modes. These ultrasmall unique nonlinear bistable devices have potentials to function as various signal processing functions in photonic-crystal-based optical-circuits.

©2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip

Takasumi Tanabe, Masaya Notomi, Satoshi Mitsugi, Akihiko Shinya, and Eiichi Kuramochi
Opt. Lett. 30(19) 2575-2577 (2005)

Nonlinear and adiabatic control of high-Q photonic crystal nanocavities

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita
Opt. Express 15(26) 17458-17481 (2007)

Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity

Laurent-Daniel Haret, Takasumi Tanabe, Eiichi Kuramochi, and Masaya Notomi
Opt. Express 17(23) 21108-21117 (2009)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Photonic resonant-tunnelling device based on photonic-crystal nanocavity. (a) Scanning electron microscope image of a fabricated device. (b) Schematic description of our device.
Fig. 2.
Fig. 2. Resonant modes of resonant-tunneling devices. (a) Transmission spectrum in a linear regime. (b, c) Field distribution of resonant modes. The calculated mode volumes are 0.102 µm3 (A) and 0.080 µm3 (B). (d, e) Detailed transmission spectra near the resonant wavelength. The transmittance is normalized at the peak. The width is estimated by Lorentzian fitting.
Fig. 3.
Fig. 3. Bistable operation using single wavelength. (a) Intensity-dependent transmission spectra taken by a tunable laser in the upsweep condition. The wavelength sweep direction is indicated by arrows. (b) Output power (POUT) versus input power (PIN) for various detuning (δ) values. The sweep direction of PIN is indicated by arrows. The nonlinear regime starts from 10 µW, and the bistable regime starts from 40 µW.
Fig. 4.
Fig. 4. Switch-off time and switching energy. (a) Temporal response of the probe output. At t=800 nsec, the pump signal was switched off. The input instantaneous power for the pump is 64 µW. The pulse width and period are 400 nsec/40 µsec. (b) Estimated switch-on energy which is the product of the incident energy and the time required for switch-on.
Fig. 5.
Fig. 5. All-optical switching operation using two wavelengths. (a) Schematic of operation. (b) Change in the transmission spectrum for mode B during the bistable switching of mode A. Conditions 1, 2, 3 correspond to 1, 2, 3 in curve (a). P IN(B) was approximately 1 µW. (c) Bistability of POUT(B) versus PIN(A) for various δA. δB is set at zero. The sweep direction of PIN(A) is indicated by arrows. We used a bandpass filter to measure P OUT(B). (d) Bistability of POUT(B) versus PIN(A) for two different δB. δA is set at 180 pm.
Fig. 6.
Fig. 6. (a) Change in the transmission intensity at the switching (ΔPOUT(B)) as a function of δ B. δ A is set at 180 pm. The positive maximum of ΔPOUT(B) occurs at δB=0, and the negative maximum of ΔPOUT(B) occurs at δB~200 pm, which equals the width of mode B. (b) AC signal amplification experiment. A detuning condition is chosen where the hysteresis is small but the nonlinearity is large.

Tables (1)

Tables Icon

Table 1. Material parameters for Si used for estimation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = ( Q L Q C ) 2 , where 1 Q L = 1 Q U + 1 Q C .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved