Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Finesse and sensitivity gain in cavity-enhanced absorption spectroscopy of biomolecules in solution

Open Access Open Access

Abstract

We describe a ‘wet mirror’ apparatus for cw cavity-enhanced absorption measurements with Bacteriochlorophyll a (BChla) in solution and show that it achieves the full sensitivity gain (≈ 2.3 × 104) afforded by the finesse (3.4 × 104) and loss distribution of our optical resonator. This result provides an important proof-of-principle demonstration for solution-phase cavity-enhanced spectroscopy; straightforward extrapolation to a system with state-of-the-art low-loss mirrors and shot-noise-limited performance indicates that single molecule sensitivity in liquids is within reach of current technology. With the probe laser locked to the cavity resonance, our instrument achieves a sensitivity ≈ 3.4 × 10-8/√Hz (for a sample of length 1.75 mm) with 100 kHz bandwidth and can reliably detect sub-nM concentrations of BChla with 1 ms integration time.

©2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Mode–locked cavity–enhanced absorption spectroscopy

Titus Gherman and Daniele Romanini
Opt. Express 10(19) 1033-1042 (2002)

Looking into the volcano with a Mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini
Opt. Express 14(23) 11442-11452 (2006)

Using active resonator impedance matching for shot-noise limited, cavity enhanced amplitude modulated laser absorption spectroscopy

Jong H. Chow, Ian C. M. Littler, David S. Rabeling, David E. McClelland, and Malcolm B. Gray
Opt. Express 16(11) 7726-7738 (2008)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup. PBS: polarizing beam-splitter; NBPS: non-polarizing beam-splitter; λ/4: quarter-wave plate; HV: high voltage. See text for other designations.
Fig. 2.
Fig. 2. Cavity-enhanced estimate (αl)ce≈ versus nominal BChla concentration (see text).

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

P sp = P inc e δ
P sp + = P inc e δ e αl
( αl ) sp = In [ P sp ] In [ P sp + ] .
Δ ( αl ) sp = { ( αl ) sp P sp } Δ P sp + { ( αl ) sp P sp + } Δ P sp +
= Δ P sp P sp Δ P sp + P sp + .
P ce = P inc ( r 1 2 g rt ) 2 r 1 2 ( 1 g rt ) 2 , g rt = r 1 r 2 e δ / 2
P ce + = P inc ( r 1 2 g rt + ) 2 r 1 2 ( 1 g rt + ) 2 , g rt + = r 1 r 2 e δ / 2 e αl = g rt e αl
( αl ) ce = In [ 1 π 2 F 1 + π 2 F R ] + In [ Q + π 2 F R + Q π 2 F ] ,
R P ce P inc , R + P ce + P inc , Q 1 R + 1 R .
( αl ) ce = π F ( R + R 1 R + ) = π F ( P ce + P ce P inc P ce + ) .
P inc ε P inc , P ce P rfl ( 1 ε ) P inc , P ce + P rfl + ( 1 ε ) P inc ,
R P rfl ( 1 ε ) P inc ε P inc R ε , R + P rfl + ( 1 ε ) P inc ε P inc R + ε ,
( αl ) ce π F ( P rfl + ( 1 ε ) P inc P rfl ( 1 ε ) P inc ε P inc P rfl + ( 1 ε ) P inc ) ,
( αl ) ce P ce + = π 2 F P inc P ce P ce + ( P inc P ce + ) 2 ,
( αl ) ce P ce + Δ P ce + = π 2 F 1 R 1 R + R + 1 R + ( Δ P ce + P ce + ) .
( αl ) ce P ce + Δ P ce + = U ce 1 ( Δ P ce + P ce + ) .
G op U ce U sp = U ce = ( π 2 F 1 R 1 R + R + 1 R + ) 1 .
1 R 1 R + R + 1 R + < 2 ,
( αl ) ce P ce + Δ P ce + < π F ( Δ P ce + P ce + ) .
π 2 1 R 1 R + R + 1 R + π 2 R + 1 R + < 1 ,
( αl ) ce F Δ F = π F R R + 1 R + ( Δ F F ) ,
( αl ) ce P inc Δ P inc = π 2 F R R + 1 R + 1 1 R + ( Δ P inc P inc ) ,
( αl ) ce P ce Δ P ce = π 2 F R 1 R + ( Δ P ce P ce ) ,
( αl ) cav P tr + Δ P tr + = π 2 F 1 R ε 1 R + ε R + ε 1 R + ε ( Δ P tr + P tr + ( 1 ε ) P inc ) ,
Δ P ce + P ce + ( S / q ) P ce + τ ( S / q ) P ce + τ = 1 ( S / q ) P ce + τ ,
( αl ) ce P ce + Δ P ce + U ce 1 ( S / q ) P ce + τ .
Δ ( αl ) ce = ( ( αl ) ce P ce + ) Δ P ce + ( ( αl ) ce P ce + ) η P ce + ,
Δ ( αl ) sp = ( ( αl ) sp P sp + ) Δ P sp + ( ( αl ) sp P sp + ) η P sp + .
U th : ce = ( P ce + ( αl ) ce P ce + ) 1 = 1 l P ce + ( P ce + α ) P ce + ,
U th : sp = ( P sp + ( αl ) sp P sp + ) 1 = 1 l P sp + ( P sp + α ) P sp + .
P ce + = P inc ( r 1 2 g rt + ) 2 r 1 2 ( 1 g rt + ) 2 ,
P ce + α = 2 l P inc g rt + ( r 1 2 g rt + ) ( 1 r 1 2 ) r 1 2 ( 1 g rt+ ) 3 ,
( P ce + α ) P ce + = 2 l P ce + g rt + ( 1 r 1 2 ) ( 1 g rt + ) ( r 1 2 g rt + )
U th : ce = 2 g rt + ( 1 r 1 2 ) ( 1 g rt + ) ( r 1 2 g rt + ) .
G th U th : ce U th : sp = 2 g rt + ( 1 r 1 2 ) ( 1 g rt + ) ( r 1 2 g rt + ) ,
Δ ( αl ) th : ce U th : ce 1 ( S / q ) P ce + τ
2 ( 1 g rt ) ( r 1 2 g rt ) g rt ( 1 r 1 2 ) ( P ce τ ) / ( h ̅ ω ) .
L = 1 g rt 2 ( 1 r 1 2 ) + ( 1 r 2 2 ) + δ ,
L + = 1 g rt + 2 ( 1 r 1 2 ) + ( 1 r 2 2 ) + δ + 2 αl .
2 π F + 2 π F = 2 π ( Δ f + Δ f ) = 2 αl ,
( αl ) Δ f = π ( Δ f + Δ f ) .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.