Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Finesse and sensitivity gain in cavity-enhanced absorption spectroscopy of biomolecules in solution

Open Access Open Access

Abstract

We describe a ‘wet mirror’ apparatus for cw cavity-enhanced absorption measurements with Bacteriochlorophyll a (BChla) in solution and show that it achieves the full sensitivity gain (≈ 2.3 × 104) afforded by the finesse (3.4 × 104) and loss distribution of our optical resonator. This result provides an important proof-of-principle demonstration for solution-phase cavity-enhanced spectroscopy; straightforward extrapolation to a system with state-of-the-art low-loss mirrors and shot-noise-limited performance indicates that single molecule sensitivity in liquids is within reach of current technology. With the probe laser locked to the cavity resonance, our instrument achieves a sensitivity ≈ 3.4 × 10-8/√Hz (for a sample of length 1.75 mm) with 100 kHz bandwidth and can reliably detect sub-nM concentrations of BChla with 1 ms integration time.

©2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Mode–locked cavity–enhanced absorption spectroscopy

Titus Gherman and Daniele Romanini
Opt. Express 10(19) 1033-1042 (2002)

Looking into the volcano with a Mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini
Opt. Express 14(23) 11442-11452 (2006)

Using active resonator impedance matching for shot-noise limited, cavity enhanced amplitude modulated laser absorption spectroscopy

Jong H. Chow, Ian C. M. Littler, David S. Rabeling, David E. McClelland, and Malcolm B. Gray
Opt. Express 16(11) 7726-7738 (2008)

References

  • View by:

  1. R. E. Kunz, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384, 180–190 (2006);N. Kinrot and M. Nathan, “Investigation of a Periodically-Segmented Waveguide Fabry-Pérot Interferometer for Use as a Chemical/Biosensor,” J. Lightwave Technol. 24, 2139–2145 (2006).
    [Crossref]
  2. A. J. Hallock, E. Berman, and R. N. Zare, “Ultratrace Kinetic Measurements of the Reduction of Methylene Blue,” J. Am. Chem. Soc. 125, 1158–1159 (2003).
    [Crossref] [PubMed]
  3. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [Crossref]
  4. A. C. R. Pipino, “Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy,” Appl. Opt. 39, 1449–1453 (2000).
    [Crossref]
  5. J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
    [Crossref]
  6. L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity” Anal. Chim. Acta 558, 2–6 (2006).
    [Crossref]
  7. S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
    [Crossref]
  8. K. L. Bechtel, R. N. Zare, A. A. Kachanov, S. S. Sanders, and B. A. Paldus, “Moving beyond Traditional UV-Visible Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC,” Anal. Chem. 77, 1177–1182 (2005).
    [Crossref] [PubMed]
  9. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectorscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
    [Crossref]
  10. M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal Lens Technique - New Method of Absorption Spectroscopy,” Science 191, 183–185 (1976).
    [Crossref] [PubMed]
  11. C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
    [Crossref]
  12. F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
    [Crossref]
  13. I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon, and A. Scherz, “Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water,” Photochem. Photobiol. 72, 204–209 (2000);J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982).
    [Crossref] [PubMed]
  14. M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem. 73, 2112–2116 (2001).
    [Crossref] [PubMed]
  15. H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
    [Crossref]
  16. A. E. Siegman, Lasers (University Science Books, Sausalito, 1986).
  17. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
    [Crossref] [PubMed]
  18. A. M. van Oijen, M. Ketelaars, J. Köhler, T. J. Aartsma, and J. Schmidt, “Spectroscopy of Individual Light-Harvesting 2 Complexes of Rhodopseudomonas acidophila: Diagonal Disorder, Intercomplex Heterogeneity, Spectral Diffusion, and Energy Transfer in the B800 Band,” Biophys. J. 78, 1570–1577 (2000).
    [Crossref] [PubMed]
  19. H. A. Schuessler, S. H. Chen, Z. Rong, Z. C. Tang, and E. C. Benck, “Cavity-enhanced photothermal spec-troscopy: dynamics, sensitivity and spatial resolution,” Appl. Opt. 31, 2669–2677 (1992).
    [Crossref] [PubMed]
  20. E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator,” J. Appl. Phys. 95, 7655–7659 (2004).
    [Crossref]

2006 (3)

R. E. Kunz, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384, 180–190 (2006);N. Kinrot and M. Nathan, “Investigation of a Periodically-Segmented Waveguide Fabry-Pérot Interferometer for Use as a Chemical/Biosensor,” J. Lightwave Technol. 24, 2139–2145 (2006).
[Crossref]

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity” Anal. Chim. Acta 558, 2–6 (2006).
[Crossref]

F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
[Crossref]

2005 (2)

K. L. Bechtel, R. N. Zare, A. A. Kachanov, S. S. Sanders, and B. A. Paldus, “Moving beyond Traditional UV-Visible Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC,” Anal. Chem. 77, 1177–1182 (2005).
[Crossref] [PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectorscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[Crossref]

2004 (1)

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator,” J. Appl. Phys. 95, 7655–7659 (2004).
[Crossref]

2003 (1)

A. J. Hallock, E. Berman, and R. N. Zare, “Ultratrace Kinetic Measurements of the Reduction of Methylene Blue,” J. Am. Chem. Soc. 125, 1158–1159 (2003).
[Crossref] [PubMed]

2002 (2)

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
[Crossref]

2001 (1)

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem. 73, 2112–2116 (2001).
[Crossref] [PubMed]

2000 (3)

A. C. R. Pipino, “Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy,” Appl. Opt. 39, 1449–1453 (2000).
[Crossref]

A. M. van Oijen, M. Ketelaars, J. Köhler, T. J. Aartsma, and J. Schmidt, “Spectroscopy of Individual Light-Harvesting 2 Complexes of Rhodopseudomonas acidophila: Diagonal Disorder, Intercomplex Heterogeneity, Spectral Diffusion, and Energy Transfer in the B800 Band,” Biophys. J. 78, 1570–1577 (2000).
[Crossref] [PubMed]

I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon, and A. Scherz, “Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water,” Photochem. Photobiol. 72, 204–209 (2000);J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982).
[Crossref] [PubMed]

1999 (1)

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[Crossref]

1998 (1)

1992 (2)

1981 (1)

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[Crossref]

1976 (1)

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal Lens Technique - New Method of Absorption Spectroscopy,” Science 191, 183–185 (1976).
[Crossref] [PubMed]

Aartsma, T. J.

A. M. van Oijen, M. Ketelaars, J. Köhler, T. J. Aartsma, and J. Schmidt, “Spectroscopy of Individual Light-Harvesting 2 Complexes of Rhodopseudomonas acidophila: Diagonal Disorder, Intercomplex Heterogeneity, Spectral Diffusion, and Energy Transfer in the B800 Band,” Biophys. J. 78, 1570–1577 (2000).
[Crossref] [PubMed]

Agirregabiria, M.

F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
[Crossref]

Albrecht, A. C.

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal Lens Technique - New Method of Absorption Spectroscopy,” Science 191, 183–185 (1976).
[Crossref] [PubMed]

Ariese, F.

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity” Anal. Chim. Acta 558, 2–6 (2006).
[Crossref]

Bearman, G. H.

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Bechtel, K. L.

K. L. Bechtel, R. N. Zare, A. A. Kachanov, S. S. Sanders, and B. A. Paldus, “Moving beyond Traditional UV-Visible Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC,” Anal. Chem. 77, 1177–1182 (2005).
[Crossref] [PubMed]

Benck, E. C.

Berganzo, J.

F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
[Crossref]

Berman, E.

A. J. Hallock, E. Berman, and R. N. Zare, “Ultratrace Kinetic Measurements of the Reduction of Methylene Blue,” J. Am. Chem. Soc. 125, 1158–1159 (2003).
[Crossref] [PubMed]

Black, E. D.

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator,” J. Appl. Phys. 95, 7655–7659 (2004).
[Crossref]

Blanco, F. J.

F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
[Crossref]

Calle, A.

F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
[Crossref]

Chen, S. H.

Dominguez, C.

F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
[Crossref]

Eichwurzel, I.

I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon, and A. Scherz, “Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water,” Photochem. Photobiol. 72, 204–209 (2000);J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982).
[Crossref] [PubMed]

Elizalde, J.

F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
[Crossref]

Fiedler, S. E.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectorscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[Crossref]

Gooijer, C.

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity” Anal. Chim. Acta 558, 2–6 (2006).
[Crossref]

Grudinin, I. S.

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator,” J. Appl. Phys. 95, 7655–7659 (2004).
[Crossref]

Hall, J. L.

Hallock, A. J.

A. J. Hallock, E. Berman, and R. N. Zare, “Ultratrace Kinetic Measurements of the Reduction of Methylene Blue,” J. Am. Chem. Soc. 125, 1158–1159 (2003).
[Crossref] [PubMed]

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectorscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[Crossref]

Hibara, A.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem. 73, 2112–2116 (2001).
[Crossref] [PubMed]

Ilchenko, V. S.

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Kachanov, A. A.

K. L. Bechtel, R. N. Zare, A. A. Kachanov, S. S. Sanders, and B. A. Paldus, “Moving beyond Traditional UV-Visible Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC,” Anal. Chem. 77, 1177–1182 (2005).
[Crossref] [PubMed]

Ketelaars, M.

A. M. van Oijen, M. Ketelaars, J. Köhler, T. J. Aartsma, and J. Schmidt, “Spectroscopy of Individual Light-Harvesting 2 Complexes of Rhodopseudomonas acidophila: Diagonal Disorder, Intercomplex Heterogeneity, Spectral Diffusion, and Energy Transfer in the B800 Band,” Biophys. J. 78, 1570–1577 (2000).
[Crossref] [PubMed]

Kimble, H. J.

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[Crossref]

G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
[Crossref] [PubMed]

Kitamori, T.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem. 73, 2112–2116 (2001).
[Crossref] [PubMed]

Kossokovski, D.

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Kunz, R. E.

R. E. Kunz, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384, 180–190 (2006);N. Kinrot and M. Nathan, “Investigation of a Periodically-Segmented Waveguide Fabry-Pérot Interferometer for Use as a Chemical/Biosensor,” J. Lightwave Technol. 24, 2139–2145 (2006).
[Crossref]

Köhler, J.

A. M. van Oijen, M. Ketelaars, J. Köhler, T. J. Aartsma, and J. Schmidt, “Spectroscopy of Individual Light-Harvesting 2 Complexes of Rhodopseudomonas acidophila: Diagonal Disorder, Intercomplex Heterogeneity, Spectral Diffusion, and Energy Transfer in the B800 Band,” Biophys. J. 78, 1570–1577 (2000).
[Crossref] [PubMed]

Lalezari, R.

Lechuga, L. M.

F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
[Crossref]

Leupold, D.

I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon, and A. Scherz, “Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water,” Photochem. Photobiol. 72, 204–209 (2000);J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982).
[Crossref] [PubMed]

Libbrecht, K. G.

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator,” J. Appl. Phys. 95, 7655–7659 (2004).
[Crossref]

Long, M. E.

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal Lens Technique - New Method of Absorption Spectroscopy,” Science 191, 183–185 (1976).
[Crossref] [PubMed]

Ma, L.-S.

Mabuchi, H.

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[Crossref]

Maleki, L.

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Mayora, K.

F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
[Crossref]

Nadeau, J. L.

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Paldus, B. A.

K. L. Bechtel, R. N. Zare, A. A. Kachanov, S. S. Sanders, and B. A. Paldus, “Moving beyond Traditional UV-Visible Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC,” Anal. Chem. 77, 1177–1182 (2005).
[Crossref] [PubMed]

Patel, C. K. N.

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[Crossref]

Pipino, A. C. R.

Rao, S. R.

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator,” J. Appl. Phys. 95, 7655–7659 (2004).
[Crossref]

Rempe, G.

Rong, Z.

Ruth, A. A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectorscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[Crossref]

Salomon, Y.

I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon, and A. Scherz, “Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water,” Photochem. Photobiol. 72, 204–209 (2000);J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982).
[Crossref] [PubMed]

Sanders, S. S.

K. L. Bechtel, R. N. Zare, A. A. Kachanov, S. S. Sanders, and B. A. Paldus, “Moving beyond Traditional UV-Visible Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC,” Anal. Chem. 77, 1177–1182 (2005).
[Crossref] [PubMed]

Sawada, T.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem. 73, 2112–2116 (2001).
[Crossref] [PubMed]

Scheer, H.

I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon, and A. Scherz, “Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water,” Photochem. Photobiol. 72, 204–209 (2000);J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982).
[Crossref] [PubMed]

Scherz, A.

I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon, and A. Scherz, “Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water,” Photochem. Photobiol. 72, 204–209 (2000);J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982).
[Crossref] [PubMed]

Schmidt, J.

A. M. van Oijen, M. Ketelaars, J. Köhler, T. J. Aartsma, and J. Schmidt, “Spectroscopy of Individual Light-Harvesting 2 Complexes of Rhodopseudomonas acidophila: Diagonal Disorder, Intercomplex Heterogeneity, Spectral Diffusion, and Energy Transfer in the B800 Band,” Biophys. J. 78, 1570–1577 (2000).
[Crossref] [PubMed]

Schuessler, H. A.

Sha, G.

S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
[Crossref]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Sausalito, 1986).

Stiel, H.

I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon, and A. Scherz, “Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water,” Photochem. Photobiol. 72, 204–209 (2000);J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982).
[Crossref] [PubMed]

Swofford, R. L.

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal Lens Technique - New Method of Absorption Spectroscopy,” Science 191, 183–185 (1976).
[Crossref] [PubMed]

Tam, A. C.

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[Crossref]

Tang, Z. C.

Teuchner, K.

I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon, and A. Scherz, “Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water,” Photochem. Photobiol. 72, 204–209 (2000);J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982).
[Crossref] [PubMed]

Thompson, R. J.

Tokeshi, M.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem. 73, 2112–2116 (2001).
[Crossref] [PubMed]

Ubachs, W.

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity” Anal. Chim. Acta 558, 2–6 (2006).
[Crossref]

Uchida, M.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem. 73, 2112–2116 (2001).
[Crossref] [PubMed]

Wiskerke, A.

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity” Anal. Chim. Acta 558, 2–6 (2006).
[Crossref]

Xie, J.

S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
[Crossref]

Xu, S.

S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
[Crossref]

Ye, J.

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[Crossref]

J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[Crossref]

Zare, R. N.

K. L. Bechtel, R. N. Zare, A. A. Kachanov, S. S. Sanders, and B. A. Paldus, “Moving beyond Traditional UV-Visible Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC,” Anal. Chem. 77, 1177–1182 (2005).
[Crossref] [PubMed]

A. J. Hallock, E. Berman, and R. N. Zare, “Ultratrace Kinetic Measurements of the Reduction of Methylene Blue,” J. Am. Chem. Soc. 125, 1158–1159 (2003).
[Crossref] [PubMed]

van Oijen, A. M.

A. M. van Oijen, M. Ketelaars, J. Köhler, T. J. Aartsma, and J. Schmidt, “Spectroscopy of Individual Light-Harvesting 2 Complexes of Rhodopseudomonas acidophila: Diagonal Disorder, Intercomplex Heterogeneity, Spectral Diffusion, and Energy Transfer in the B800 Band,” Biophys. J. 78, 1570–1577 (2000).
[Crossref] [PubMed]

van der Sneppen, L.

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity” Anal. Chim. Acta 558, 2–6 (2006).
[Crossref]

Anal. Bioanal. Chem. (1)

R. E. Kunz, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384, 180–190 (2006);N. Kinrot and M. Nathan, “Investigation of a Periodically-Segmented Waveguide Fabry-Pérot Interferometer for Use as a Chemical/Biosensor,” J. Lightwave Technol. 24, 2139–2145 (2006).
[Crossref]

Anal. Chem. (2)

K. L. Bechtel, R. N. Zare, A. A. Kachanov, S. S. Sanders, and B. A. Paldus, “Moving beyond Traditional UV-Visible Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC,” Anal. Chem. 77, 1177–1182 (2005).
[Crossref] [PubMed]

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of Subyoctomole Amounts of Nonfluorescent Molecules Using a Thermal Lens Microscope: Subsingle-Molecule Determination,” Anal. Chem. 73, 2112–2116 (2001).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity” Anal. Chim. Acta 558, 2–6 (2006).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[Crossref]

Biophys. J. (1)

A. M. van Oijen, M. Ketelaars, J. Köhler, T. J. Aartsma, and J. Schmidt, “Spectroscopy of Individual Light-Harvesting 2 Complexes of Rhodopseudomonas acidophila: Diagonal Disorder, Intercomplex Heterogeneity, Spectral Diffusion, and Energy Transfer in the B800 Band,” Biophys. J. 78, 1570–1577 (2000).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

A. J. Hallock, E. Berman, and R. N. Zare, “Ultratrace Kinetic Measurements of the Reduction of Methylene Blue,” J. Am. Chem. Soc. 125, 1158–1159 (2003).
[Crossref] [PubMed]

J. Appl. Phys. (1)

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator,” J. Appl. Phys. 95, 7655–7659 (2004).
[Crossref]

J. Micromech. Microeng. (1)

F. J. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, C. Dominguez, and L. M. Lechuga, “Microfluidic-optical integrated CMOS compatible devicesfor label-free biochemical sensing,” J. Micromech. Microeng. 16, 1006–1016 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Photochem. Photobiol. (1)

I. Eichwurzel, H. Stiel, K. Teuchner, D. Leupold, H. Scheer, Y. Salomon, and A. Scherz, “Photophysical Consequences of Coupling Bacteriochlorophyll a with Serine and its Resulting Solubility in Water,” Photochem. Photobiol. 72, 204–209 (2000);J. S. Connolly, E. B. Samuel, and A. F. Janzen, “Effects of solvent on the fluorescence properties of bacteriochlorophyll a,” Photochem. Photobiol. 36, 565–574 (1982).
[Crossref] [PubMed]

Proc. SPIE (1)

J. L. Nadeau, V. S. Ilchenko, D. Kossokovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Rev. Mod. Phys. (1)

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[Crossref]

Rev. Sci. Instrum. (2)

S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
[Crossref]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectorscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[Crossref]

Science (1)

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal Lens Technique - New Method of Absorption Spectroscopy,” Science 191, 183–185 (1976).
[Crossref] [PubMed]

Other (1)

A. E. Siegman, Lasers (University Science Books, Sausalito, 1986).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup. PBS: polarizing beam-splitter; NBPS: non-polarizing beam-splitter; λ/4: quarter-wave plate; HV: high voltage. See text for other designations.
Fig. 2.
Fig. 2. Cavity-enhanced estimate (αl)ce≈ versus nominal BChla concentration (see text).

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

P sp = P inc e δ
P sp + = P inc e δ e αl
( αl ) sp = In [ P sp ] In [ P sp + ] .
Δ ( αl ) sp = { ( αl ) sp P sp } Δ P sp + { ( αl ) sp P sp + } Δ P sp +
= Δ P sp P sp Δ P sp + P sp + .
P ce = P inc ( r 1 2 g rt ) 2 r 1 2 ( 1 g rt ) 2 , g rt = r 1 r 2 e δ / 2
P ce + = P inc ( r 1 2 g rt + ) 2 r 1 2 ( 1 g rt + ) 2 , g rt + = r 1 r 2 e δ / 2 e αl = g rt e αl
( αl ) ce = In [ 1 π 2 F 1 + π 2 F R ] + In [ Q + π 2 F R + Q π 2 F ] ,
R P ce P inc , R + P ce + P inc , Q 1 R + 1 R .
( αl ) ce = π F ( R + R 1 R + ) = π F ( P ce + P ce P inc P ce + ) .
P inc ε P inc , P ce P rfl ( 1 ε ) P inc , P ce + P rfl + ( 1 ε ) P inc ,
R P rfl ( 1 ε ) P inc ε P inc R ε , R + P rfl + ( 1 ε ) P inc ε P inc R + ε ,
( αl ) ce π F ( P rfl + ( 1 ε ) P inc P rfl ( 1 ε ) P inc ε P inc P rfl + ( 1 ε ) P inc ) ,
( αl ) ce P ce + = π 2 F P inc P ce P ce + ( P inc P ce + ) 2 ,
( αl ) ce P ce + Δ P ce + = π 2 F 1 R 1 R + R + 1 R + ( Δ P ce + P ce + ) .
( αl ) ce P ce + Δ P ce + = U ce 1 ( Δ P ce + P ce + ) .
G op U ce U sp = U ce = ( π 2 F 1 R 1 R + R + 1 R + ) 1 .
1 R 1 R + R + 1 R + < 2 ,
( αl ) ce P ce + Δ P ce + < π F ( Δ P ce + P ce + ) .
π 2 1 R 1 R + R + 1 R + π 2 R + 1 R + < 1 ,
( αl ) ce F Δ F = π F R R + 1 R + ( Δ F F ) ,
( αl ) ce P inc Δ P inc = π 2 F R R + 1 R + 1 1 R + ( Δ P inc P inc ) ,
( αl ) ce P ce Δ P ce = π 2 F R 1 R + ( Δ P ce P ce ) ,
( αl ) cav P tr + Δ P tr + = π 2 F 1 R ε 1 R + ε R + ε 1 R + ε ( Δ P tr + P tr + ( 1 ε ) P inc ) ,
Δ P ce + P ce + ( S / q ) P ce + τ ( S / q ) P ce + τ = 1 ( S / q ) P ce + τ ,
( αl ) ce P ce + Δ P ce + U ce 1 ( S / q ) P ce + τ .
Δ ( αl ) ce = ( ( αl ) ce P ce + ) Δ P ce + ( ( αl ) ce P ce + ) η P ce + ,
Δ ( αl ) sp = ( ( αl ) sp P sp + ) Δ P sp + ( ( αl ) sp P sp + ) η P sp + .
U th : ce = ( P ce + ( αl ) ce P ce + ) 1 = 1 l P ce + ( P ce + α ) P ce + ,
U th : sp = ( P sp + ( αl ) sp P sp + ) 1 = 1 l P sp + ( P sp + α ) P sp + .
P ce + = P inc ( r 1 2 g rt + ) 2 r 1 2 ( 1 g rt + ) 2 ,
P ce + α = 2 l P inc g rt + ( r 1 2 g rt + ) ( 1 r 1 2 ) r 1 2 ( 1 g rt+ ) 3 ,
( P ce + α ) P ce + = 2 l P ce + g rt + ( 1 r 1 2 ) ( 1 g rt + ) ( r 1 2 g rt + )
U th : ce = 2 g rt + ( 1 r 1 2 ) ( 1 g rt + ) ( r 1 2 g rt + ) .
G th U th : ce U th : sp = 2 g rt + ( 1 r 1 2 ) ( 1 g rt + ) ( r 1 2 g rt + ) ,
Δ ( αl ) th : ce U th : ce 1 ( S / q ) P ce + τ
2 ( 1 g rt ) ( r 1 2 g rt ) g rt ( 1 r 1 2 ) ( P ce τ ) / ( h ̅ ω ) .
L = 1 g rt 2 ( 1 r 1 2 ) + ( 1 r 2 2 ) + δ ,
L + = 1 g rt + 2 ( 1 r 1 2 ) + ( 1 r 2 2 ) + δ + 2 αl .
2 π F + 2 π F = 2 π ( Δ f + Δ f ) = 2 αl ,
( αl ) Δ f = π ( Δ f + Δ f ) .

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved