Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Single shot interferometric method for measuring the nonlinear refractive index

Open Access Open Access

Abstract

In this paper we are introducing a new single shot method for measuring the nonlinear refractive index of materials in a simple interferometric pump-probe configuration. The theoretical model proposed for extracting the nonlinear refractive index from the experimental fringe pattern and the experimental configuration are presented and discussed. The results obtained by this method are in good agreement with that obtained on the same sample using the conventional Z-scan method.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Single-shot measurement of nonlinear absorption and nonlinear refraction

J. Jayabalan, Asha Singh, and Shrikant M. Oak
Appl. Opt. 45(16) 3852-3858 (2006)

Measurement of transient nonlinear refractive index in gases using xenon supercontinuum single-shot spectral interferometry

Y.-H. Chen, S. Varma, I. Alexeev, and H. M. Milchberg
Opt. Express 15(12) 7458-7467 (2007)

Interferometric measurements of nonlinear refractive index in the infrared spectral range

Gaudenis Jansonas, Rimantas Budriūnas, Mikas Vengris, and Arūnas Varanavičius
Opt. Express 30(17) 30507-30524 (2022)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 The experimental setup based on a Michelson interferometer (a) and an experimental fringe pattern obtained when the investigated sample is excited (b).
Fig. 2
Fig. 2 (a) 3D representation of the reconstructed phase (dots) fitted with Eq. (10) (surface). (b) The top view of the fitting surface. Inset: the reconstructed phase change corresponding to the tilted Gaussian excitation only.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

I( x,y,z=0 )= I 0 e ( ( ( x x 0 )cos( θ e,x ) ) 2 + ( ( y y 0 )cos( θ e,y ) ) 2 w 2 ) .
Δn( x,y,z )= n 2 I ex ( x,y,z ),
I ex ( x,y,z )=I( x,y,z=0 ) e α 0 z .
Δ Φ nl ( x,y,z=L )=k 0 L Δn( x,y,z ) dz.
Δ Φ nl ( x,y,z=L )=k n 2 I ex ( x,y,z=0 ) 1 e α 0 L α 0
Δ Φ nl (x,y)Δ Φ nl ( x,y,z>L )=Δ Φ nl ( x,y,z=L ).
Δ Φ nl ( x,y,z=L )=ΔΦ ( x,y,z ) ( 3 ) +ΔΦ ( x,y,z ) ( 5 ) +
ΔΦ ( x,y,z=L ) ( 3 ) =k n 2 I ex ( x,y,z=0 ) [ 1exp( α 0 L ) ] / α 0 ,
ΔΦ ( x,y,z=L ) ( 5 ) =k n 4 I ex 2 ( x,y,z=0 ) [ 1exp( 2 α 0 L ) ] / 2 α 0 .
Δn( x,y,z )= n 2 I ex ( x,y,z ) 1+ I ex ( x,y,z ) / I sat .
Δ Φ nl ( x,y,z=L )= k n 2 I sat α 0 ln[ I sat + I ex (x,y,z=0) I sat + I ex ( x,y,z=0 ) e α 0 L ]
I( x,y )= I 1 ( x,y )+ I 2 ( x,y )+2 ( I 1 ( x,y ) I 2 ( x,y ) ) cos( ΔΦ( x,y ) ).
ΔΦ( x,y )Δ Φ total ( x,y )=2Δ Φ nl ( x,y )+Δ Φ tilt ( x,y ),
Δ Φ tilt ( x,y )=k[ xsin( θ x )+ysin( θ y ) ],
I( x,y )=A(x,y)+B(x,y)cos( 2Δ Φ nl ( x,y )+ksin( θ x )x ),
A( x,y )= I 1 ( x,y )+ I 2 ( x,y ) and B( x,y )=2 I 1 ( x,y )+ I 2 ( x,y ) .
I( x,y )=A(x,y)+C(x,y) e ikxsin( θ x ) + C (x,y) e ikxsin( θ x ) ,
C( x,y )=( 1/2 )B( x,y ) e 2iΔ Φ nl ( x,y )
I ˜ ( u x , u y )= A ˜ ( u x , u y )+ C ˜ ( u x ksin( θ x ), u y )+ C ˜ ( u x +ksin( θ x ), u y ),

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved