Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics

Open Access Open Access

Abstract

We propose a method for engineering thermally excited far field electromagnetic radiation using epsilon-near-zero metamaterials and introduce a new class of artificial media: epsilon-near-pole metamaterials. We also introduce the concept of high temperature plasmonics as conventional metamaterial building blocks have relatively poor thermal stability. Using our approach, the angular nature, spectral position, and width of the thermal emission and optical absorption can be finely tuned for a variety of applications. In particular, we show that these metamaterial emitters near 1500 K can be used as part of thermophotovoltaic devices to surpass the full concentration Shockley-Queisser limit of 41%. Our work paves the way for high temperature thermal engineering applications of metamaterials.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical characterization of epsilon-near-zero, epsilon-near-pole, and hyperbolic response in nanowire metamaterials

R. Starko-Bowes, J. Atkinson, W. Newman, H. Hu, T. Kallos, G. Palikaras, R. Fedosejevs, S. Pramanik, and Z. Jacob
J. Opt. Soc. Am. B 32(10) 2074-2080 (2015)

High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array

Wei Gu, Guihua Tang, and Wenquan Tao
Opt. Express 23(24) 30681-30694 (2015)

Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters

Enas Sakr and Peter Bermel
Opt. Express 25(20) A880-A895 (2017)

References

  • View by:

  1. P. Taylor, O. Lavanagne d’Ortigue, N. Trudeau, and M. Francoeur, “Energy efficiency indicators for pubilc electricity production from fossil fuels,” Tech. Rep., International Energy Agency (2008).
  2. U. Buskies, “The efficiency of coal-fired combined-cycle powerplants,” Appl. Therm. Eng. 16, 959–974 (1996).
    [Crossref]
  3. M. Rosen and I. Dincer, “Exergoeconomic analysis of power plants operating on various fuels,” Appl. Therm. Eng. 23, 643–658 (2003).
    [Crossref]
  4. E. Chaisson, “Long-term global heating from energy usage,” Eos Trans. Am. Geophys. Union. 89, 253–260.
  5. A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells 94, 2137–2147 (2010).
    [Crossref]
  6. W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 1640, 510–519 (1961).
    [Crossref]
  7. B. Wedlockt, “Thermo-photo-voltaic energy conversion,” Proc. of the IEEE 51, 694–698 (1963).
    [Crossref]
  8. “ www.jxcrystals.com , www.mtpv.com ,” (2012).
  9. J. Gee, J. Moreno, S. Lin, and J. Fleming, “Selective emitters using photonic crystals for thermophotovoltaic energy conversion,” in “Photovoltaic specialists, 2002. Conf. Proc. 29th IEEE,” (2002), pp. 896–899.
  10. J. Mason, D. Adams, Z. Johnson, S. Smith, A. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18, 25192–8 (2010).
    [Crossref] [PubMed]
  11. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
    [Crossref]
  12. J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
    [Crossref]
  13. M. Maksimovic, M. Hammer, and Z. Jaksic, “Thermal radiation antennas made of multilayer structures containing negative index metamaterials,” Proc. of SPIE 6896, 689605 (2008).
    [Crossref]
  14. X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 4–7 (2011).
    [Crossref]
  15. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6, 549–554 (2011).
    [Crossref] [PubMed]
  16. S. Han and D. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4685–4687 (2010).
    [Crossref]
  17. Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
    [Crossref]
  18. E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
    [Crossref]
  19. P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
    [Crossref]
  20. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [Crossref] [PubMed]
  21. C. Schuler, C. Wolff, K. Busch, and M. Florescu, “Thermal emission from finite photonic crystals,” Appl. Phys. Lett. 95, 241103 (2009).
    [Crossref]
  22. Z. Li, “Modified thermal radiation in three-dimensional photonic crystals,” Phys. Rev. B 66, 1–4 (2002).
    [Crossref]
  23. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29, 863–865 (2004).
    [Crossref] [PubMed]
  24. J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of Helmholtzs reciprocity principle and Kirchhoffs law,” J. Opt. Soc. Am. A 15, 2735–2744 (1998).
    [Crossref]
  25. A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells 94, 2137–2147 (2010).
    [Crossref]
  26. G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107– 111 (2011).
    [Crossref] [PubMed]
  27. A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 1–13 (2007).
    [Crossref]
  28. N. Ashcroft and N. Mermin, “Solid state physics,” (1968).
  29. B. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nature Mater. 2, 749–754 (2003).
    [Crossref]
  30. R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
    [Crossref]
  31. J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
    [Crossref] [PubMed]
  32. J. Elser, R. Wangberg, V. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
    [Crossref]
  33. G. D’Aguanno, N. Mattiucci, A. Alu, C. Argyropoulos, J. Foreman, and M. Bloemer, “Thermal emission from a metamaterial wire medium slab,” Opt. Express 20, 9784–9789 (2012).
    [Crossref]
  34. L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero meta-material for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
    [Crossref]
  35. G. Agarwal and D. Pattanayak, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447– 1475 (1974).
    [Crossref]
  36. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 1318, 4370–4379 (1972).
    [Crossref]
  37. K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys. 81, 7764–7772 (1997).
    [Crossref]
  38. G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).
    [Crossref]
  39. H. Pierson, Handbook of Refractory Carbides and Nitrides (William Andrews, Inc.1996).
  40. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
    [Crossref]
  41. Q. Zhang, “Recent progress in high-temperature solar selective coatings,” Sol. Energy Mater. Sol. Cells 62, 63–74 (2000).
    [Crossref]
  42. J. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37, 768–779 (2012).
    [Crossref]

2012 (4)

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
[Crossref]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

J. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37, 768–779 (2012).
[Crossref]

G. D’Aguanno, N. Mattiucci, A. Alu, C. Argyropoulos, J. Foreman, and M. Bloemer, “Thermal emission from a metamaterial wire medium slab,” Opt. Express 20, 9784–9789 (2012).
[Crossref]

2011 (6)

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6, 549–554 (2011).
[Crossref] [PubMed]

G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107– 111 (2011).
[Crossref] [PubMed]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 4–7 (2011).
[Crossref]

2010 (6)

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero meta-material for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

J. Mason, D. Adams, Z. Johnson, S. Smith, A. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18, 25192–8 (2010).
[Crossref] [PubMed]

S. Han and D. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4685–4687 (2010).
[Crossref]

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).
[Crossref]

A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells 94, 2137–2147 (2010).
[Crossref]

A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells 94, 2137–2147 (2010).
[Crossref]

2009 (3)

C. Schuler, C. Wolff, K. Busch, and M. Florescu, “Thermal emission from finite photonic crystals,” Appl. Phys. Lett. 95, 241103 (2009).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
[Crossref] [PubMed]

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
[Crossref]

2008 (2)

M. Maksimovic, M. Hammer, and Z. Jaksic, “Thermal radiation antennas made of multilayer structures containing negative index metamaterials,” Proc. of SPIE 6896, 689605 (2008).
[Crossref]

J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

2007 (2)

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 1–13 (2007).
[Crossref]

2006 (1)

J. Elser, R. Wangberg, V. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

2004 (1)

2003 (2)

M. Rosen and I. Dincer, “Exergoeconomic analysis of power plants operating on various fuels,” Appl. Therm. Eng. 23, 643–658 (2003).
[Crossref]

B. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nature Mater. 2, 749–754 (2003).
[Crossref]

2002 (1)

Z. Li, “Modified thermal radiation in three-dimensional photonic crystals,” Phys. Rev. B 66, 1–4 (2002).
[Crossref]

2000 (1)

Q. Zhang, “Recent progress in high-temperature solar selective coatings,” Sol. Energy Mater. Sol. Cells 62, 63–74 (2000).
[Crossref]

1998 (1)

1997 (1)

K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys. 81, 7764–7772 (1997).
[Crossref]

1996 (1)

U. Buskies, “The efficiency of coal-fired combined-cycle powerplants,” Appl. Therm. Eng. 16, 959–974 (1996).
[Crossref]

1974 (1)

G. Agarwal and D. Pattanayak, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447– 1475 (1974).
[Crossref]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 1318, 4370–4379 (1972).
[Crossref]

1963 (1)

B. Wedlockt, “Thermo-photo-voltaic energy conversion,” Proc. of the IEEE 51, 694–698 (1963).
[Crossref]

1961 (1)

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 1640, 510–519 (1961).
[Crossref]

Adams, D.

Agarwal, G.

G. Agarwal and D. Pattanayak, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447– 1475 (1974).
[Crossref]

Alekseyev, L.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero meta-material for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Algora, C.

A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells 94, 2137–2147 (2010).
[Crossref]

A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells 94, 2137–2147 (2010).
[Crossref]

Alu, A.

G. D’Aguanno, N. Mattiucci, A. Alu, C. Argyropoulos, J. Foreman, and M. Bloemer, “Thermal emission from a metamaterial wire medium slab,” Opt. Express 20, 9784–9789 (2012).
[Crossref]

A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 1–13 (2007).
[Crossref]

Argyropoulos, C.

Ashcroft, N.

N. Ashcroft and N. Mermin, “Solid state physics,” (1968).

Atkinson, R.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
[Crossref]

Barnakov, Y.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero meta-material for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Bartal, G.

J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Bermel, P.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6, 549–554 (2011).
[Crossref] [PubMed]

Bloemer, M.

Boltasseva, A.

J. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37, 768–779 (2012).
[Crossref]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).
[Crossref]

Busch, K.

C. Schuler, C. Wolff, K. Busch, and M. Florescu, “Thermal emission from finite photonic crystals,” Appl. Phys. Lett. 95, 241103 (2009).
[Crossref]

Buskies, U.

U. Buskies, “The efficiency of coal-fired combined-cycle powerplants,” Appl. Therm. Eng. 16, 959–974 (1996).
[Crossref]

Celanovic, I.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6, 549–554 (2011).
[Crossref] [PubMed]

I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29, 863–865 (2004).
[Crossref] [PubMed]

Chaisson, E.

E. Chaisson, “Long-term global heating from energy usage,” Eos Trans. Am. Geophys. Union. 89, 253–260.

Chang, P.

P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Chang, Y.

P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Chen, H.

P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Chen, Y.

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 1318, 4370–4379 (1972).
[Crossref]

Datas, A.

A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells 94, 2137–2147 (2010).
[Crossref]

A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells 94, 2137–2147 (2010).
[Crossref]

Davis, A.

Dincer, I.

M. Rosen and I. Dincer, “Exergoeconomic analysis of power plants operating on various fuels,” Appl. Therm. Eng. 23, 643–658 (2003).
[Crossref]

Drevillon, J.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
[Crossref]

D’Aguanno, G.

Elser, J.

J. Elser, R. Wangberg, V. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

Engheta, N.

A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 1–13 (2007).
[Crossref]

Evans, P.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
[Crossref]

Fan, S.

Fleming, J.

J. Gee, J. Moreno, S. Lin, and J. Fleming, “Selective emitters using photonic crystals for thermophotovoltaic energy conversion,” in “Photovoltaic specialists, 2002. Conf. Proc. 29th IEEE,” (2002), pp. 896–899.

Florescu, M.

C. Schuler, C. Wolff, K. Busch, and M. Florescu, “Thermal emission from finite photonic crystals,” Appl. Phys. Lett. 95, 241103 (2009).
[Crossref]

Foreman, J.

Francoeur, M.

P. Taylor, O. Lavanagne d’Ortigue, N. Trudeau, and M. Francoeur, “Energy efficiency indicators for pubilc electricity production from fossil fuels,” Tech. Rep., International Energy Agency (2008).

Gee, J.

J. Gee, J. Moreno, S. Lin, and J. Fleming, “Selective emitters using photonic crystals for thermophotovoltaic energy conversion,” in “Photovoltaic specialists, 2002. Conf. Proc. 29th IEEE,” (2002), pp. 896–899.

Ghebrebrhan, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6, 549–554 (2011).
[Crossref] [PubMed]

Gordon, R. G.

B. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nature Mater. 2, 749–754 (2003).
[Crossref]

Gosztola, D.

G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107– 111 (2011).
[Crossref] [PubMed]

Greffet, J.

Hammer, M.

M. Maksimovic, M. Hammer, and Z. Jaksic, “Thermal radiation antennas made of multilayer structures containing negative index metamaterials,” Proc. of SPIE 6896, 689605 (2008).
[Crossref]

Han, S.

S. Han and D. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4685–4687 (2010).
[Crossref]

Harradon, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6, 549–554 (2011).
[Crossref] [PubMed]

Hendren, W.

G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107– 111 (2011).
[Crossref] [PubMed]

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
[Crossref]

Ilak, M.

Jaksic, Z.

M. Maksimovic, M. Hammer, and Z. Jaksic, “Thermal radiation antennas made of multilayer structures containing negative index metamaterials,” Proc. of SPIE 6896, 689605 (2008).
[Crossref]

Jiang, Y.

P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Joannopoulos, J.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6, 549–554 (2011).
[Crossref] [PubMed]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 1318, 4370–4379 (1972).
[Crossref]

Johnson, Z.

Jokerst, N.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 4–7 (2011).
[Crossref]

Joulain, K.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
[Crossref]

Kassakian, J.

Khurgin, J.

J. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37, 768–779 (2012).
[Crossref]

Kim, J.

Kim, K.

K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys. 81, 7764–7772 (1997).
[Crossref]

L., Y.

J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Lavanagne d’Ortigue, O.

P. Taylor, O. Lavanagne d’Ortigue, N. Trudeau, and M. Francoeur, “Energy efficiency indicators for pubilc electricity production from fossil fuels,” Tech. Rep., International Energy Agency (2008).

Lee, S.

P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Li, H.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero meta-material for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Li, Z.

Z. Li, “Modified thermal radiation in three-dimensional photonic crystals,” Phys. Rev. B 66, 1–4 (2002).
[Crossref]

Lim, B.

B. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nature Mater. 2, 749–754 (2003).
[Crossref]

Lin, S.

J. Gee, J. Moreno, S. Lin, and J. Fleming, “Selective emitters using photonic crystals for thermophotovoltaic energy conversion,” in “Photovoltaic specialists, 2002. Conf. Proc. 29th IEEE,” (2002), pp. 896–899.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 4–7 (2011).
[Crossref]

Liu, Z.

J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Ma, D.

K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys. 81, 7764–7772 (1997).
[Crossref]

Maksimovic, M.

M. Maksimovic, M. Hammer, and Z. Jaksic, “Thermal radiation antennas made of multilayer structures containing negative index metamaterials,” Proc. of SPIE 6896, 689605 (2008).
[Crossref]

Mason, J.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

J. Mason, D. Adams, Z. Johnson, S. Smith, A. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18, 25192–8 (2010).
[Crossref] [PubMed]

Mattiucci, N.

Mermin, N.

N. Ashcroft and N. Mermin, “Solid state physics,” (1968).

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Moreno, J.

J. Gee, J. Moreno, S. Lin, and J. Fleming, “Selective emitters using photonic crystals for thermophotovoltaic energy conversion,” in “Photovoltaic specialists, 2002. Conf. Proc. 29th IEEE,” (2002), pp. 896–899.

Murphy, A.

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
[Crossref]

Naik, G.

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).
[Crossref]

Narimanov, E.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero meta-material for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

J. Elser, R. Wangberg, V. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

Nefzaoui, E.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
[Crossref]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Nieto-Vesperinas, M.

Noginov, M.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero meta-material for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Norris, D.

S. Han and D. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4685–4687 (2010).
[Crossref]

O’Sullivan, F.

Padilla, W.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 4–7 (2011).
[Crossref]

Park, K.

K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys. 81, 7764–7772 (1997).
[Crossref]

Pattanayak, D.

G. Agarwal and D. Pattanayak, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447– 1475 (1974).
[Crossref]

Perreault, D.

Pierson, H.

H. Pierson, Handbook of Refractory Carbides and Nitrides (William Andrews, Inc.1996).

Podolskiy, V.

G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107– 111 (2011).
[Crossref] [PubMed]

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
[Crossref]

J. Elser, R. Wangberg, V. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

Pollard, R.

G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107– 111 (2011).
[Crossref] [PubMed]

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
[Crossref]

Queisser, H.

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 1640, 510–519 (1961).
[Crossref]

Rahtu, A.

B. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nature Mater. 2, 749–754 (2003).
[Crossref]

Rephaeli, E.

Rosen, M.

M. Rosen and I. Dincer, “Exergoeconomic analysis of power plants operating on various fuels,” Appl. Therm. Eng. 23, 643–658 (2003).
[Crossref]

Salandrino, A.

A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 1–13 (2007).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Schuler, C.

C. Schuler, C. Wolff, K. Busch, and M. Florescu, “Thermal emission from finite photonic crystals,” Appl. Phys. Lett. 95, 241103 (2009).
[Crossref]

Shockley, W.

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 1640, 510–519 (1961).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Silveirinha, M.

A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 1–13 (2007).
[Crossref]

Smith, S.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

J. Mason, D. Adams, Z. Johnson, S. Smith, A. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18, 25192–8 (2010).
[Crossref] [PubMed]

Soljacic, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6, 549–554 (2011).
[Crossref] [PubMed]

Stacy, A.

J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Starr, A.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 4–7 (2011).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 4–7 (2011).
[Crossref]

Sun, C.

J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Taylor, P.

P. Taylor, O. Lavanagne d’Ortigue, N. Trudeau, and M. Francoeur, “Energy efficiency indicators for pubilc electricity production from fossil fuels,” Tech. Rep., International Energy Agency (2008).

Trudeau, N.

P. Taylor, O. Lavanagne d’Ortigue, N. Trudeau, and M. Francoeur, “Energy efficiency indicators for pubilc electricity production from fossil fuels,” Tech. Rep., International Energy Agency (2008).

Tumkur, T.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero meta-material for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 4–7 (2011).
[Crossref]

Tzuang, L.

P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

W., Y.

J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Wangberg, R.

J. Elser, R. Wangberg, V. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

Wasserman, D.

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

J. Mason, D. Adams, Z. Johnson, S. Smith, A. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18, 25192–8 (2010).
[Crossref] [PubMed]

Wedlockt, B.

B. Wedlockt, “Thermo-photo-voltaic energy conversion,” Proc. of the IEEE 51, 694–698 (1963).
[Crossref]

Wiederrecht, G.

G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107– 111 (2011).
[Crossref] [PubMed]

Wolff, C.

C. Schuler, C. Wolff, K. Busch, and M. Florescu, “Thermal emission from finite photonic crystals,” Appl. Phys. Lett. 95, 241103 (2009).
[Crossref]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Wu, Y.

P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Wurtz, G.

G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107– 111 (2011).
[Crossref] [PubMed]

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
[Crossref]

Yao, J.

J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Ye, Y.

P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

Yeng, Y.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6, 549–554 (2011).
[Crossref] [PubMed]

Zayats, A.

G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107– 111 (2011).
[Crossref] [PubMed]

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
[Crossref]

Zhang, Q.

Q. Zhang, “Recent progress in high-temperature solar selective coatings,” Sol. Energy Mater. Sol. Cells 62, 63–74 (2000).
[Crossref]

Zhang, X.

J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Zhang, Z.

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Appl. Phys. Lett. (5)

J. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
[Crossref]

P. Chang, Y. Jiang, H. Chen, Y. Chang, Y. Wu, L. Tzuang, Y. Ye, and S. Lee, “Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Perot type resonances,” Appl. Phys. Lett. 98, 073111 (2011).
[Crossref]

C. Schuler, C. Wolff, K. Busch, and M. Florescu, “Thermal emission from finite photonic crystals,” Appl. Phys. Lett. 95, 241103 (2009).
[Crossref]

J. Elser, R. Wangberg, V. Podolskiy, and E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006).
[Crossref]

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero meta-material for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Appl. Therm. Eng. (2)

U. Buskies, “The efficiency of coal-fired combined-cycle powerplants,” Appl. Therm. Eng. 16, 959–974 (1996).
[Crossref]

M. Rosen and I. Dincer, “Exergoeconomic analysis of power plants operating on various fuels,” Appl. Therm. Eng. 23, 643–658 (2003).
[Crossref]

Eos Trans. Am. Geophys. Union. (1)

E. Chaisson, “Long-term global heating from energy usage,” Eos Trans. Am. Geophys. Union. 89, 253–260.

J. Appl. Phys. (3)

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 1640, 510–519 (1961).
[Crossref]

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111, 084316 (2012).
[Crossref]

K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys. 81, 7764–7772 (1997).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

MRS Bull. (1)

J. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37, 768–779 (2012).
[Crossref]

Nanoscale Res. Lett. (1)

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. Yeng, I. Celanovic, J. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6, 549–554 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107– 111 (2011).
[Crossref] [PubMed]

Nature Mater. (1)

B. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nature Mater. 2, 749–754 (2003).
[Crossref]

Opt. Commun. (1)

Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (4)

Z. Li, “Modified thermal radiation in three-dimensional photonic crystals,” Phys. Rev. B 66, 1–4 (2002).
[Crossref]

A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 1–13 (2007).
[Crossref]

G. Agarwal and D. Pattanayak, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447– 1475 (1974).
[Crossref]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 1318, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. Starr, N. Jokerst, and W. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 4–7 (2011).
[Crossref]

R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, and V. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102, 1–4 (2009).
[Crossref]

Phys. Status Solidi RRL (1)

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL 4, 295–297 (2010).
[Crossref]

Proc. of SPIE (1)

M. Maksimovic, M. Hammer, and Z. Jaksic, “Thermal radiation antennas made of multilayer structures containing negative index metamaterials,” Proc. of SPIE 6896, 689605 (2008).
[Crossref]

Proc. of the IEEE (1)

B. Wedlockt, “Thermo-photo-voltaic energy conversion,” Proc. of the IEEE 51, 694–698 (1963).
[Crossref]

Science (1)

J. Yao, Z. Liu, Y. L., Y. W., C. Sun, G. Bartal, A. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells 94, 2137–2147 (2010).
[Crossref]

A. Datas and C. Algora, “Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters,” Sol. Energy Mater. Sol. Cells 94, 2137–2147 (2010).
[Crossref]

Q. Zhang, “Recent progress in high-temperature solar selective coatings,” Sol. Energy Mater. Sol. Cells 62, 63–74 (2000).
[Crossref]

Other (5)

P. Taylor, O. Lavanagne d’Ortigue, N. Trudeau, and M. Francoeur, “Energy efficiency indicators for pubilc electricity production from fossil fuels,” Tech. Rep., International Energy Agency (2008).

“ www.jxcrystals.com , www.mtpv.com ,” (2012).

J. Gee, J. Moreno, S. Lin, and J. Fleming, “Selective emitters using photonic crystals for thermophotovoltaic energy conversion,” in “Photovoltaic specialists, 2002. Conf. Proc. 29th IEEE,” (2002), pp. 896–899.

N. Ashcroft and N. Mermin, “Solid state physics,” (1968).

H. Pierson, Handbook of Refractory Carbides and Nitrides (William Andrews, Inc.1996).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1. :
Fig. 1. : (A) Polarization averaged emissivity of a 100 nm thick film of ENZ material, following a Drude model, on a perfectly reflecting backing. The spectrally narrow peak is the ENZ resonance. The broad blur at shorter wavelengths is the onset of impedance matching in the Re(ε) ≈ 1 range. As loss is increased, these regions blend together and the magnitude of the emissivity tends towards unity in a broad spectral range. The inset shows the relative dielectric constant used. (B) Polarization averaged emissivity of a 100 nm thick material film in the ENP regime, based on a Lorentz model, on a perfectly reflecting backing. The component loss considered is identical to that used in (a): γA = γB. Again, the inset shows the relative dielectric constants used to calculate the polarization averaged emissivity. The spectrally sharp behavior shown here makes ENP type resonances a promising candidate for TPV applications.
Fig. 2. :
Fig. 2. : (A) Schematic of a multilayer metamaterial created by interlacing layers of optical metal and dielectric. (B) Schematic of a nanowire metamaterial created by embedding metallic nanowires in a host dielectric matrix. Both structures can be created with current fabrication techniques [26, 31].
Fig. 3
Fig. 3 Multilayer ENZ emitter: (A) Effective medium theory calculation of the emissivity of a planar multilayer structure. The metamaterial is composed of twenty unit cells of 5 nm thick tantalum (modeled by a Drude relation) and 45 nm of titanium dioxide (ε = 7.5) on optically thick tantalum. Both materials can be deposited by atomic layer deposition [29]. The inset shows the effective medium parameters as functions of wavelength. The ENP resonance is located outside of the plotted area and has little effect due to the spectral power distribution of a blackbody. (B) Transfer matrix calculation of the multilayer structure which shows excellent agreement with EMT. The inset shows the relative emission strength of an ideal blackbody as function of wavelength. The arrows denote the cutoffs of the emissivity plots.
Fig. 4
Fig. 4 Nanowire ENP emitter: (A) Comparison of the polarization averaged emissivity of a 280 nm thick metamaterial emitter making use of a host matrix of silicon (assumed to be a constant dielectric) and 20 nm diameter titanium nitride nanowires in a 120 nm square unit cell on an optically thick tantalum backing. The two curves compare emissivity as calculated by effective medium theory and finite difference time domain simulation (Lumerical) at normal incidence. The insets show the same comparison for s- and p-polarized emissivity over a compressed wavelength range of 1.5 to 2.1 μm at a polar angle of 50 degrees. Note the excellent agreement between EMT and the full numerical simulation. (B) Polarization averaged emissivity of the nanowire system described in (A) calculated using EMT. Emission peaks occurring below the designed emission are known to be part of the Bragg scattering regime [33]. These peaks have little effect in application due to low emitted power at wavelengths shorter than 800 nm for bodies cooler than 3000 K. The inset shows the effective medium parameters as functions of wavelength. The spectrally narrow, omnidirectional nature of the ENP emissivity peak is nearly ideal for use as an emitter in a TPV device.
Fig. 5
Fig. 5 Cross-sectional view of the narrow isofrequency surfaces of the metamaterial in the ENZ regime. The spherical isofrequency surface corresponds to vacuum. (A) As the perpendicular permittivity nears zero from the negative side, the dispersion relation inside the metamaterial becomes a narrow hyperboloid. (B) Ellipsoidal isofrequency surface as the perpendicular effective medium constant approaches ENZ from the positive side. Note that only waves at near-normal incidence from vacuum penetrate the metamaterial which are immediately absorbed due to the ENZ resonance. Furthermore, the large impedance mismatch at higher angles leads to high reflections. This results in highly directional emissivity patterns. (C) P-polarized emissivity plot for a 450 nm thick metamaterial emitter consisting of a host matrix of aluminum oxide (Al2O3) embedded with 15 nm diameter silver nanowires in a 115 nm square unit cell using the effective medium approach. The angularly sharp emission near normal incidence around 1.075 μm is usable for applications requiring coherent thermal radiation. The inset shows a polar plot of the emissivity along the 1.075 μm line. The secondary bands of high emissivity around the ENZ region is due to the impedance matching behavior in the ellispoidal/hyperboloidal isofrequency regime which moves to higher angles as the |Re(ε) → 0| condition is relaxed.
Fig. 6
Fig. 6 (A) Drude models of the optical properties of TiN and AZO based on the data presented in [38, 40]. (B) Fine-tuning of the ENP metamaterial resonance by altering the fill fraction of metal in the unit cell. In this plot the titanium nitride/silicon metamaterial system described in Fig. 4 is used. Both AZO and TiN achieve thermally stable plasmonic behavior in the near infrared (Table Sec.4).
Fig. 7
Fig. 7 (A) Comparison of the ultimate efficiency of a titanium nitride metamaterial emitter (Fig. 4) to that of a blackbody for a 0.71 eV material bandgap, corresponding to GaSb. Based on bulk material parameters, the metamaterial emitter will be thermally stable up to 1650 K. (B) Comparison of the angularly averaged spectral emission characteristics between the titanium nitride metamaterial design, an ideal blackbody, and an emitter which maximizes the efficiency of energy conversion at 1500 K. The large lobe of the metamaterial ENP resonance closely matches the position and magnitude of the emitter producing the highest TPV device efficiency.
Fig. 8
Fig. 8 (A) Theoretical efficiency of three TPV devices taking into account all discussed effects. The cell parameters of the Ta/TiO2 multilayer and TiN/Si nanowire systems are the same as in Fig. 3 and Fig. 4. The third system utilizes 250 nm long, 20 nm diameter AZO rods in a 125 nm square Al2O3 matrix, set on an optically thick tantalum backing, and an InGaAs photovoltaic cell with bandgap set at 2100 nm. In these plots the efficiency of heating the source is not included. However, due to the tantalum backing included in all designs, the performance of these devices should not be greatly altered by the characteristics of the heat source. (B) Final output power density showing the potential for TPV. Due to the lower energy bandgap of the InGaAs photovoltaic cell, the AZO based metamaterial system produces relatively higher power density at lower temperatures. The opposite is seen at higher temperatures. (inset) Schematic of a multilayer metamaterial near the TPV cell.

Tables (1)

Tables Icon

Table 1: Melting temperature and plasmonic figure of merit for near-IR metals.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ζ ( λ , θ , ϕ ) = α ( λ , θ , ϕ ) ,
ε | | = ε M ρ + ε D ( 1 ρ ) ε = ε M ε D ε M ( 1 ρ ) + ε D ρ ,
ε | | = ε D [ ε M ( 1 + ρ ) + ε D ( 1 ρ ) ε M ( 1 ρ ) + ε D ( 1 + ρ ) ] ε = ρ ε M + ( 1 ρ ) ε D ,
k 2 ε | | + k | | 2 ε = ω 2 c 2 .
η ult ( λ gap , T ) = 0 π / 2 cos ( θ ) sin ( θ ) d θ 0 λ g λ λ g ζ E ( λ , θ ) I B B ( λ , T ) d λ 0 π / 2 cos ( θ ) sin ( θ ) d θ 0 ζ E ( λ , θ ) I B B ( λ , T ) d λ
I B B ( λ ) = 8 π h c λ 5 ( e h c λ k B T 1 ) ,
Q B B ( λ g , T C ) R rad ( T C ) + G other ( T C ) R other ( T C ) = 0 ,
Q B B ( λ g , T C ) = 2 0 2 π d ϕ 0 π / 2 cos ( θ ) sin ( θ ) d θ 0 λ g λ λ g I B B ( λ , T C ) d λ ,
R rad ( T C ) = Q B B ( λ g , T C ) R other ( T C ) = G other ( T C ) .
Q E ( λ g , T E ) Q B B ( λ g , T C ) e V V C + G other ( T C ) G other ( T C ) e V V C I q = 0 ,
Q E ( λ g , T E ) = 0 2 π d ϕ 0 π / 2 cos ( θ ) sin ( θ ) d θ 0 λ g λ λ g ζ E ( λ , θ ) I B B ( λ , T E ) d λ ,
V O C = V C ln ( f rec 2 Q E ( λ g , T E ) Q B B ( λ g , T C ) f rec + 1 ) ,
η rec ( λ g , T E , T C ) = V O C V g .
η pow = V P I ( V P ) V O C I S C = v p p 2 ( v p p + ln ( 1 + v p p ) ) ( 1 + v p p e v p p ) ,
V O C = V P + V C ln ( 1 + V P V C ) .

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved