Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors

Open Access Open Access

Abstract

Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells’ rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 – 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of Jsc and Voc are achieved in comparison to those previously reported in the literature for the same type of devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Spin-coated Ag nanoparticles for enhancing light absorption of thin film a-Si:H solar cells

Chan Il Yeo, Jang Hun Choi, Joon Beom Kim, Jeong Chul Lee, and Yong Tak Lee
Opt. Mater. Express 4(2) 346-351 (2014)

Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both

Joshua D. Winans, Chanse Hungerford, Krishanu Shome, Lewis J. Rothberg, and Philippe M. Fauchet
Opt. Express 23(3) A92-A105 (2015)

Plasmonic nano-antenna a-Si:H solar cell

Marcel Di Vece, Yinghuan Kuang, Stephan N.F. van Duren, Jamie M. Charry, Lourens van Dijk, and Ruud E.I. Schropp
Opt. Express 20(25) 27327-27336 (2012)

References

  • View by:

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  2. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
    [Crossref] [PubMed]
  3. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
    [Crossref]
  4. K. Söderström, F. J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95(12), 3585–3591 (2011).
    [Crossref]
  5. M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale (2014), doi:
    [Crossref]
  6. Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
    [Crossref]
  7. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett. 11(10), 4239–4245 (2011).
    [Crossref] [PubMed]
  8. J. Park, J. Rao, T. Kim, and S. Varlamov, “Highest efficiency plasmonic polycrystalline silicon thin-film solar cells by optimization of plasmonic nanoparticle fabrication,” Plasmonics 8(2), 1209–1219 (2013).
    [Crossref]
  9. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
    [Crossref] [PubMed]
  10. C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
    [Crossref]
  11. S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24(26), 265601 (2013).
    [Crossref] [PubMed]
  12. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
    [Crossref] [PubMed]
  13. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [Crossref]
  14. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
    [Crossref] [PubMed]
  15. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  16. M. J. Mendes, A. Luque, I. Tobías, and A. Martí, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
    [Crossref]
  17. C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
    [Crossref]
  18. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
    [Crossref] [PubMed]
  19. H. Tan, R. Santbergen, Y. Guangtao, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” Phot. IEEE J. 3, 53–58 (2013).
  20. A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
    [Crossref]
  21. R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).
  22. R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids 352(9-20), 1471–1474 (2006).
    [Crossref]
  23. P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, and E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs,” Thin Solid Films 515(24), 8450–8454 (2007).
    [Crossref]
  24. R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
    [Crossref]
  25. T. L. Temple and D. M. Bagnall, “Broadband scattering of the solar spectrum by spherical metal nanoparticles,” Prog. Photovolt. Res. Appl. 21, 600–611 (2013).
  26. M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
    [Crossref] [PubMed]
  27. C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, and C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21(S5), A786–A797 (2013).
    [Crossref] [PubMed]
  28. H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
    [Crossref]
  29. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [Crossref] [PubMed]
  30. P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-film solar cells with randomly rough and hybrid textures,” Opt. Express 21(S5), A808–A820 (2013).
    [Crossref] [PubMed]
  31. S. Calnan and A. N. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films 518(7), 1839–1849 (2010).
    [Crossref]
  32. J. A. Thornton, “High Rate Thick Film Growth,” Annu. Rev. Mater. Sci. 7(1), 239–260 (1977).
    [Crossref]
  33. M. Adamov, B. Perović, and T. Nenadović, “Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering,” Thin Solid Films 24(1), 89–100 (1974).
    [Crossref]
  34. D. Depla, S. Mahieu, and J. E. Greene, “Chapter 5 - Sputter Deposition Processes,” in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, ed. (William Andrew Publishing, 2010), pp. 253–296.

2014 (1)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

2013 (9)

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24(26), 265601 (2013).
[Crossref] [PubMed]

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, and C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21(S5), A786–A797 (2013).
[Crossref] [PubMed]

P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Light trapping in thin-film solar cells with randomly rough and hybrid textures,” Opt. Express 21(S5), A808–A820 (2013).
[Crossref] [PubMed]

H. Tan, R. Santbergen, Y. Guangtao, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” Phot. IEEE J. 3, 53–58 (2013).

J. Park, J. Rao, T. Kim, and S. Varlamov, “Highest efficiency plasmonic polycrystalline silicon thin-film solar cells by optimization of plasmonic nanoparticle fabrication,” Plasmonics 8(2), 1209–1219 (2013).
[Crossref]

T. L. Temple and D. M. Bagnall, “Broadband scattering of the solar spectrum by spherical metal nanoparticles,” Prog. Photovolt. Res. Appl. 21, 600–611 (2013).

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[Crossref]

2012 (5)

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
[Crossref]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

2011 (5)

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[Crossref] [PubMed]

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

K. Söderström, F. J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95(12), 3585–3591 (2011).
[Crossref]

2010 (3)

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

S. Calnan and A. N. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films 518(7), 1839–1849 (2010).
[Crossref]

2009 (2)

M. J. Mendes, A. Luque, I. Tobías, and A. Martí, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

2008 (1)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

2007 (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, and E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs,” Thin Solid Films 515(24), 8450–8454 (2007).
[Crossref]

2006 (1)

R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids 352(9-20), 1471–1474 (2006).
[Crossref]

2004 (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

1977 (1)

J. A. Thornton, “High Rate Thick Film Growth,” Annu. Rev. Mater. Sci. 7(1), 239–260 (1977).
[Crossref]

1974 (1)

M. Adamov, B. Perović, and T. Nenadović, “Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering,” Thin Solid Films 24(1), 89–100 (1974).
[Crossref]

Adamov, M.

M. Adamov, B. Perović, and T. Nenadović, “Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering,” Thin Solid Films 24(1), 89–100 (1974).
[Crossref]

Almeida, P.

R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids 352(9-20), 1471–1474 (2006).
[Crossref]

Andreani, L. C.

Antolín, E.

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

Araújo, A.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

Artacho, I.

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

Atwater, H. A.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bagnall, D. M.

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[Crossref]

T. L. Temple and D. M. Bagnall, “Broadband scattering of the solar spectrum by spherical metal nanoparticles,” Prog. Photovolt. Res. Appl. 21, 600–611 (2013).

Ballif, C.

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, and C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21(S5), A786–A797 (2013).
[Crossref] [PubMed]

K. Söderström, F. J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95(12), 3585–3591 (2011).
[Crossref]

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

Barquinha, P.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, and E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs,” Thin Solid Films 515(24), 8450–8454 (2007).
[Crossref]

R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids 352(9-20), 1471–1474 (2006).
[Crossref]

Barros, R.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

Beck, F. J.

Bicho, A.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

Biron, R.

K. Söderström, F. J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95(12), 3585–3591 (2011).
[Crossref]

Callahan, D. M.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

Calnan, S.

S. Calnan and A. N. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films 518(7), 1839–1849 (2010).
[Crossref]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19(25), 25230–25241 (2011).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Costa, D.

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

Crupi, I.

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24(26), 265601 (2013).
[Crossref] [PubMed]

Cubero, O.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

Cui, Y.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Eminian, C.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

Escarré, J.

K. Söderström, F. J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95(12), 3585–3591 (2011).
[Crossref]

Fan, S.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Ferraria, A. M.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

Ferreira, I.

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids 352(9-20), 1471–1474 (2006).
[Crossref]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Filonovich, S. A.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

Fortunato, E.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, and E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs,” Thin Solid Films 515(24), 8450–8454 (2007).
[Crossref]

R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids 352(9-20), 1471–1474 (2006).
[Crossref]

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

García-Linares, P.

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

Gaspar, D.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

Gonçalves, A.

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

Gonçalves, G.

P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, and E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs,” Thin Solid Films 515(24), 8450–8454 (2007).
[Crossref]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Guangtao, Y.

H. Tan, R. Santbergen, Y. Guangtao, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” Phot. IEEE J. 3, 53–58 (2013).

Haug, F. J.

K. Söderström, F. J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95(12), 3585–3591 (2011).
[Crossref]

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

Haug, F.-J.

Hernández, E.

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

Herzig, H. P.

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Isabella, O.

Kim, T.

J. Park, J. Rao, T. Kim, and S. Varlamov, “Highest efficiency plasmonic polycrystalline silicon thin-film solar cells by optimization of plasmonic nanoparticle fabrication,” Plasmonics 8(2), 1209–1219 (2013).
[Crossref]

Kondo, M.

H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
[Crossref]

Kowalczewski, P.

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Liscidini, M.

Luque, A.

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

M. J. Mendes, A. Luque, I. Tobías, and A. Martí, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

López, E.

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

Martins, R.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, and E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs,” Thin Solid Films 515(24), 8450–8454 (2007).
[Crossref]

R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids 352(9-20), 1471–1474 (2006).
[Crossref]

Martí, A.

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

M. J. Mendes, A. Luque, I. Tobías, and A. Martí, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

Mateus, T.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

McPeak, K. M.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Mendes, M. J.

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24(26), 265601 (2013).
[Crossref] [PubMed]

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

M. J. Mendes, A. Luque, I. Tobías, and A. Martí, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

Mirabella, S.

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24(26), 265601 (2013).
[Crossref] [PubMed]

Mokkapati, S.

Morawiec, S.

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24(26), 265601 (2013).
[Crossref] [PubMed]

Munday, J. N.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Nagpal, P.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Naqavi, A.

Nenadovic, T.

M. Adamov, B. Perović, and T. Nenadović, “Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering,” Thin Solid Films 24(1), 89–100 (1974).
[Crossref]

Neves, N.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

Niquille, X.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

Norris, D. J.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Oh, S.-H.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Ouyang, Z.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

Pahud, C.

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, and C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21(S5), A786–A797 (2013).
[Crossref] [PubMed]

K. Söderström, F. J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95(12), 3585–3591 (2011).
[Crossref]

Park, J.

J. Park, J. Rao, T. Kim, and S. Varlamov, “Highest efficiency plasmonic polycrystalline silicon thin-film solar cells by optimization of plasmonic nanoparticle fabrication,” Plasmonics 8(2), 1209–1219 (2013).
[Crossref]

Pereira, L.

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, and E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs,” Thin Solid Films 515(24), 8450–8454 (2007).
[Crossref]

R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids 352(9-20), 1471–1474 (2006).
[Crossref]

Pereira, S.

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

Perovic, B.

M. Adamov, B. Perović, and T. Nenadović, “Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering,” Thin Solid Films 24(1), 89–100 (1974).
[Crossref]

Pillai, S.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Pimentel, A.

R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids 352(9-20), 1471–1474 (2006).
[Crossref]

Polman, A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24(26), 265601 (2013).
[Crossref] [PubMed]

Ramiro, I.

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

Raniero, L.

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

Rao, J.

J. Park, J. Rao, T. Kim, and S. Varlamov, “Highest efficiency plasmonic polycrystalline silicon thin-film solar cells by optimization of plasmonic nanoparticle fabrication,” Plasmonics 8(2), 1209–1219 (2013).
[Crossref]

Rech, B.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Rego, A. M. B.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

Sai, H.

H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
[Crossref]

Saito, K.

H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
[Crossref]

Santbergen, R.

H. Tan, R. Santbergen, Y. Guangtao, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” Phot. IEEE J. 3, 53–58 (2013).

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Sesuraj, R. S. A.

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[Crossref]

Silva, L.

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

Simone, F.

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24(26), 265601 (2013).
[Crossref] [PubMed]

Smets, A. H. M.

H. Tan, R. Santbergen, Y. Guangtao, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” Phot. IEEE J. 3, 53–58 (2013).

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Söderström, K.

K. Söderström, F. J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95(12), 3585–3591 (2011).
[Crossref]

Tan, H.

H. Tan, R. Santbergen, Y. Guangtao, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” Phot. IEEE J. 3, 53–58 (2013).

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Tao, Y.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

Temple, T. L.

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[Crossref]

T. L. Temple and D. M. Bagnall, “Broadband scattering of the solar spectrum by spherical metal nanoparticles,” Prog. Photovolt. Res. Appl. 21, 600–611 (2013).

Thompson, C. V.

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

Thornton, J. A.

J. A. Thornton, “High Rate Thick Film Growth,” Annu. Rev. Mater. Sci. 7(1), 239–260 (1977).
[Crossref]

Tiwari, A. N.

S. Calnan and A. N. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films 518(7), 1839–1849 (2010).
[Crossref]

Tobías, I.

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

M. J. Mendes, A. Luque, I. Tobías, and A. Martí, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Varlamov, S.

J. Park, J. Rao, T. Kim, and S. Varlamov, “Highest efficiency plasmonic polycrystalline silicon thin-film solar cells by optimization of plasmonic nanoparticle fabrication,” Plasmonics 8(2), 1209–1219 (2013).
[Crossref]

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Vicente, A.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

Wong, J.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

Yu, Z.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Zeman, M.

H. Tan, R. Santbergen, Y. Guangtao, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” Phot. IEEE J. 3, 53–58 (2013).

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, and C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21(S5), A786–A797 (2013).
[Crossref] [PubMed]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Zhao, X.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Águas, H.

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

Annu. Rev. Mater. Res. (1)

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42(1), 399–434 (2012).
[Crossref]

Annu. Rev. Mater. Sci. (1)

J. A. Thornton, “High Rate Thick Film Growth,” Annu. Rev. Mater. Sci. 7(1), 239–260 (1977).
[Crossref]

Appl. Phys. Lett. (3)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

M. J. Mendes, A. Luque, I. Tobías, and A. Martí, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009).
[Crossref]

H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
[Crossref]

J. Appl. Phys. (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

J. Non-Cryst. Solids (1)

R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira, and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films,” J. Non-Cryst. Solids 352(9-20), 1471–1474 (2006).
[Crossref]

Nano Lett. (4)

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12(1), 214–218 (2012).
[Crossref] [PubMed]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Nanotechnology (2)

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, and I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24(26), 265601 (2013).
[Crossref] [PubMed]

M. J. Mendes, E. Hernández, E. López, P. García-Linares, I. Ramiro, I. Artacho, E. Antolín, I. Tobías, A. Martí, and A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24(34), 345402 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Philos. Mag. (1)

R. Martins, L. Raniero, L. Pereira, D. Costa, H. Águas, S. Pereira, L. Silva, A. Gonçalves, I. Ferreira, and E. Fortunato, “Nanostructured silicon and its application to solar cells, position sensors and thin film transistors,” Philos. Mag. 89, 2699–2721 (2009).

Phot. IEEE J. (1)

H. Tan, R. Santbergen, Y. Guangtao, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” Phot. IEEE J. 3, 53–58 (2013).

Plasmonics (1)

J. Park, J. Rao, T. Kim, and S. Varlamov, “Highest efficiency plasmonic polycrystalline silicon thin-film solar cells by optimization of plasmonic nanoparticle fabrication,” Plasmonics 8(2), 1209–1219 (2013).
[Crossref]

Prog. Photovolt. Res. Appl. (3)

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(8), 917–926 (2011).
[Crossref]

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[Crossref]

T. L. Temple and D. M. Bagnall, “Broadband scattering of the solar spectrum by spherical metal nanoparticles,” Prog. Photovolt. Res. Appl. 21, 600–611 (2013).

Rep. Prog. Phys. (1)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

A. Araújo, R. Barros, T. Mateus, D. Gaspar, N. Neves, A. Vicente, S. A. Filonovich, P. Barquinha, E. Fortunato, A. M. Ferraria, A. M. B. Rego, A. Bicho, H. Águas, and R. Martins, “Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells,” Sci. Technol. Adv. Mater. 14(4), 045009 (2013).
[Crossref]

Sol. Energy (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

K. Söderström, F. J. Haug, J. Escarré, C. Pahud, R. Biron, and C. Ballif, “Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 95(12), 3585–3591 (2011).
[Crossref]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[Crossref]

Thin Solid Films (3)

P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, and E. Fortunato, “Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs,” Thin Solid Films 515(24), 8450–8454 (2007).
[Crossref]

S. Calnan and A. N. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films 518(7), 1839–1849 (2010).
[Crossref]

M. Adamov, B. Perović, and T. Nenadović, “Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering,” Thin Solid Films 24(1), 89–100 (1974).
[Crossref]

Other (2)

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale (2014), doi:
[Crossref]

D. Depla, S. Mahieu, and J. E. Greene, “Chapter 5 - Sputter Deposition Processes,” in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, ed. (William Andrew Publishing, 2010), pp. 253–296.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic drawing of a plasmonic back reflector (PBR) with the structure: Glass substrate/100nm Ag mirror/40nm AZO spacer/Ag NPs/80nm AZO cover. (b) 70° tilted SEM image of the surface morphology of a PBR with NPs formed from a 8 nm thick Ag film annealed at 400 °C for 1 h, covered with a 80 nm AZO layer.
Fig. 2
Fig. 2 (a-b) Planar and (c-d) 70° tilted SEM micrographs of uncovered NPs formed, respectively, from 8 and 12 nm thick Ag films annealed at 400 °C for 1 h. (e) Histogram of relative counts (counts normalized to the total number of NPs), as a function of the NPs’ in-plane diameter, for the NPs presented in the micrographs.
Fig. 3
Fig. 3 (a) Total and (b) diffuse reflection of the plasmonic back reflectors (PBRs) with NPs formed from 8 (circles) and 12 nm (triangles) thick Ag films annealed at 400 °C for 1 h, before (solid symbols) and after (open symbols) the deposition of the AZO cover layer. The RTotal and RDiff of a flat BR reference (without NPs) are also shown (open diamonds) for comparison. The wavelength range important for light trapping in a-Si:H (600 – 800 nm) solar cells is indicated by the vertical dashed lines.
Fig. 4
Fig. 4 Annealing time dependence of the average (a) total and (b) diffuse reflection in the 600 – 800 nm wavelength range for the plasmonic back reflectors (PBRs) with NPs formed from 8 (open symbols) and 12 nm (solid symbols) thick Ag films annealed at 200, 400 and 500 °C. The absolute differences in <RTotal>600-800nm and <RDiff>600-800nm observed between PBRs fabricated in distinct batches, with the same fabrication parameters, were below 2.3%. That is the main error associated to the data points in the plots.
Fig. 5
Fig. 5 Structure of a-Si:H n-i-p solar cell with plasmonic back reflector (PBR) shown (a) schematically and (b) in SEM cross section at a tilt angle of 20°. (c-d) SEM of the honeycomb-like surface texture of the top IZO layer of the devices fabricated with NPs formed from 8 and 12 nm thick Ag films annealed at 500 °C for 1 h and 400 °C for 4 h, respectively.
Fig. 6
Fig. 6 External quantum efficiency (EQE) curves of solar cells fabricated on two PBRs with NPs formed from 8 and 12 nm thick Ag films. The EQE of a reference cell with a flat back reflector is shown for comparison.
Fig. 7
Fig. 7 Plot of short circuit current density enhancement as a function of the average diffused reflection ( < R Diff > 600 800nm ) of the PBRs in the 600 – 800 nm wavelength range, corresponding to the light trapping window of a-Si:H solar cells.

Tables (1)

Tables Icon

Table 1 Electrical parameters of the solar cells fabricated on two PBRs with NPs formed from 8 and 12 nm thick Ag films, in comparison with the reference cell deposited on a flat back reflector (EQE curves shown in Fig. 6)*

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R X λ 2 λ 1 = λ 1 λ 2 R X dλ λ 2 λ 1

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved