Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Airy-like beam-based light-sheet microscopy with improved FOV for zebrafish intracerebral hemorrhage

Open Access Open Access

Abstract

Airy light-sheet microscopy is rapidly gaining importance for imaging intact biological specimens because of the rapid speed, high resolution, and wide field nature of the imaging method. However, the depth of field (DOF) of the detection objective imposes limitations on the modulation transfer function (MTF) of the light sheet, which in turn affects the size of the field of view (FOV). Here we present an optimized phase modulation model, based on ‘Airy-like’ beam family, to stretch the curved lobes, which brings a wider FOV while maintaining high resolution. In addition, we further develop a planar ‘Airy-like’ light-sheet by two-photon excitation which can avoid the deconvolution process. We validated the new imaging method by performing a real-time monitoring of the dynamic process of cerebral hemorrhage in zebrafish larva. The proposed Airy-like beam-based light-sheet microscopy has great potential to be applied to the precise screening of cerebral hemorrhage-related drugs to help precision medicine in the future.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Axial resolution enhancement for planar Airy beam light-sheet microscopy via the complementary beam subtraction method

Chao Liu, Xianghua Yu, Chen Bai, Xing Li, Yuan Zhou, Shaohui Yan, Junwei Min, Dan Dan, Runze Li, Shuangyu Gu, and Baoli Yao
Appl. Opt. 60(32) 10239-10245 (2021)

A compact Airy beam light sheet microscope with a tilted cylindrical lens

Zhengyi Yang, Martynas Prokopas, Jonathan Nylk, Clara Coll-Lladó, Frank J. Gunn-Moore, David E. K. Ferrier, Tom Vettenburg, and Kishan Dholakia
Biomed. Opt. Express 5(10) 3434-3442 (2014)

Planar Airy beam light-sheet for two-photon microscopy

Neveen A. Hosny, James A. Seyforth, Gunnar Spickermann, Thomas J. Mitchell, Pedro Almada, Robert Chesters, Scott J. Mitchell, George Chennell, Anthony C. Vernon, Kwangwook Cho, Deepak P. Srivastava, Robert Forster, and Tom Vettenburg
Biomed. Opt. Express 11(7) 3927-3935 (2020)

References

  • View by:

  1. I. C. Hostettler, D. J. Seiffge, and D. J. Werring, “Intracerebral hemorrhage: an update on diagnosis and treatment,” Expert Rev Neurother 19(7), 679–694 (2019).
    [Crossref]
  2. B. P. Walcott and R. T. Peterson, “Zebrafish models of cerebrovascular disease,” J Cereb Blood Flow Metab 34(4), 571–577 (2014).
    [Crossref]
  3. S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
    [Crossref]
  4. S. Eisa-Beygi, G. Hatch, S. Noble, M. Ekker, and T. W. Moon, “The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway,” Dev Biol 373(2), 258–266 (2013).
    [Crossref]
  5. S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
    [Crossref]
  6. S. Nakamura, Y. Saito, T. Gouda, T. Imai, M. Shimazawa, Y. Nishimura, and H. Hara, “Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae,” J Stroke Cerebrovasc Dis 29(11), 105215 (2020).
    [Crossref]
  7. B. Huang, Z. Y. Zhou, S. Li, X. H. Huang, J. Y. Tang, M. P. M. Hoi, and S. M. Y. Lee, “Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell-cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility,” Pharmacol Res 128, 389–398 (2018).
    [Crossref]
  8. Z. Yang, P. Haslehurst, S. Scott, N. Emptage, and K. Dholakia, “A compact light-sheet microscope for the study of the mammalian central nervous system,” Sci Rep 6(1), 26317 (2016).
    [Crossref]
  9. Y. Liu, S. Dale, R. Ball, A. J. VanLeuven, A. Sornborger, J. D. Lauderdale, and P. Kner, “Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy,” Neurophotonics 6(01), 1 (2019).
    [Crossref]
  10. X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
    [Crossref]
  11. V. Trivedi, T. V. Truong, A. Trinh le, D. B. Holland, M. Liebling, and S. E. Fraser, “Dynamic structure and protein expression of the live embryonic heart captured by 2-photon light sheet microscopy and retrospective registration,” Biomed. Opt. Express 6(6), 2056–2066 (2015).
    [Crossref]
  12. Z. Yang, L. Mei, F. Xia, Q. Luo, L. Fu, and H. Gong, “Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish,” Biomed. Opt. Express 6(5), 1797–1811 (2015).
    [Crossref]
  13. M. Weber and J. Huisken, “In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy,” Swiss Med Wkly 145, w14227 (2015).
    [Crossref]
  14. W. C. Lemon and P. J. Keller, “Live imaging of nervous system development and function using light-sheet microscopy,” Mol. Reprod. Dev. 82(7-8), 605–618 (2015).
    [Crossref]
  15. M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
    [Crossref]
  16. T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
    [Crossref]
  17. F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, and A. Rohrbach, “Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation,” Opt. Express 21(11), 13824–13839 (2013).
    [Crossref]
  18. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat Methods 8(5), 417–423 (2011).
    [Crossref]
  19. N. A. Hosny, J. A. Seyforth, G. Spickermann, T. J. Mitchell, P. Almada, R. Chesters, S. J. Mitchell, G. Chennell, A. C. Vernon, K. Cho, D. P. Srivastava, R. Forster, and T. Vettenburg, “Planar Airy beam light-sheet for two-photon microscopy,” Biomed. Opt. Express 11(7), 3927–3935 (2020).
    [Crossref]
  20. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref]
  21. P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
    [Crossref]
  22. S. Crilly, A. Njegic, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using Zebrafish Larvae to Study the Pathological Consequences of Hemorrhagic Stroke,” J. Vis. Exp. 148, e59716 (2019).
    [Crossref]

2021 (1)

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

2020 (2)

N. A. Hosny, J. A. Seyforth, G. Spickermann, T. J. Mitchell, P. Almada, R. Chesters, S. J. Mitchell, G. Chennell, A. C. Vernon, K. Cho, D. P. Srivastava, R. Forster, and T. Vettenburg, “Planar Airy beam light-sheet for two-photon microscopy,” Biomed. Opt. Express 11(7), 3927–3935 (2020).
[Crossref]

S. Nakamura, Y. Saito, T. Gouda, T. Imai, M. Shimazawa, Y. Nishimura, and H. Hara, “Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae,” J Stroke Cerebrovasc Dis 29(11), 105215 (2020).
[Crossref]

2019 (3)

Y. Liu, S. Dale, R. Ball, A. J. VanLeuven, A. Sornborger, J. D. Lauderdale, and P. Kner, “Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy,” Neurophotonics 6(01), 1 (2019).
[Crossref]

I. C. Hostettler, D. J. Seiffge, and D. J. Werring, “Intracerebral hemorrhage: an update on diagnosis and treatment,” Expert Rev Neurother 19(7), 679–694 (2019).
[Crossref]

S. Crilly, A. Njegic, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using Zebrafish Larvae to Study the Pathological Consequences of Hemorrhagic Stroke,” J. Vis. Exp. 148, e59716 (2019).
[Crossref]

2018 (2)

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

B. Huang, Z. Y. Zhou, S. Li, X. H. Huang, J. Y. Tang, M. P. M. Hoi, and S. M. Y. Lee, “Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell-cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility,” Pharmacol Res 128, 389–398 (2018).
[Crossref]

2017 (2)

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

2016 (1)

Z. Yang, P. Haslehurst, S. Scott, N. Emptage, and K. Dholakia, “A compact light-sheet microscope for the study of the mammalian central nervous system,” Sci Rep 6(1), 26317 (2016).
[Crossref]

2015 (4)

2014 (2)

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

B. P. Walcott and R. T. Peterson, “Zebrafish models of cerebrovascular disease,” J Cereb Blood Flow Metab 34(4), 571–577 (2014).
[Crossref]

2013 (3)

S. Eisa-Beygi, G. Hatch, S. Noble, M. Ekker, and T. W. Moon, “The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway,” Dev Biol 373(2), 258–266 (2013).
[Crossref]

F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, and A. Rohrbach, “Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation,” Opt. Express 21(11), 13824–13839 (2013).
[Crossref]

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref]

2011 (1)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat Methods 8(5), 417–423 (2011).
[Crossref]

2007 (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Ahrens, M. B.

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref]

Ai, N.

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Alessandri, K.

Allan, S. M.

S. Crilly, A. Njegic, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using Zebrafish Larvae to Study the Pathological Consequences of Hemorrhagic Stroke,” J. Vis. Exp. 148, e59716 (2019).
[Crossref]

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Almada, P.

Andersen, P. E.

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

Andrews, M. R.

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

Badrock, A. P.

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Ball, R.

Y. Liu, S. Dale, R. Ball, A. J. VanLeuven, A. Sornborger, J. D. Lauderdale, and P. Kner, “Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy,” Neurophotonics 6(01), 1 (2019).
[Crossref]

Barrington, J.

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat Methods 8(5), 417–423 (2011).
[Crossref]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Chan, S. W.

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Chen, C.

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Chen, X.

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Chennell, G.

Chesters, R.

Cho, K.

Chong, C. M.

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Christodoulides, D. N.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Cizmar, T.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Coll-Llado, C.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Crilly, S.

S. Crilly, A. Njegic, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using Zebrafish Larvae to Study the Pathological Consequences of Hemorrhagic Stroke,” J. Vis. Exp. 148, e59716 (2019).
[Crossref]

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Dale, S.

Y. Liu, S. Dale, R. Ball, A. J. VanLeuven, A. Sornborger, J. D. Lauderdale, and P. Kner, “Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy,” Neurophotonics 6(01), 1 (2019).
[Crossref]

Dalgarno, H. I. C.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Dang, Y.

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat Methods 8(5), 417–423 (2011).
[Crossref]

Dholakia, K.

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

Z. Yang, P. Haslehurst, S. Scott, N. Emptage, and K. Dholakia, “A compact light-sheet microscope for the study of the mammalian central nervous system,” Sci Rep 6(1), 26317 (2016).
[Crossref]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Drexler, W.

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

Eisa-Beygi, S.

S. Eisa-Beygi, G. Hatch, S. Noble, M. Ekker, and T. W. Moon, “The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway,” Dev Biol 373(2), 258–266 (2013).
[Crossref]

Ekker, M.

S. Eisa-Beygi, G. Hatch, S. Noble, M. Ekker, and T. W. Moon, “The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway,” Dev Biol 373(2), 258–266 (2013).
[Crossref]

Emptage, N.

Z. Yang, P. Haslehurst, S. Scott, N. Emptage, and K. Dholakia, “A compact light-sheet microscope for the study of the mammalian central nervous system,” Sci Rep 6(1), 26317 (2016).
[Crossref]

Fahrbach, F. O.

Ferrier, D. E. K.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Forbes, L. H.

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

Forster, R.

Fotiou, E.

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Fraser, S. E.

Fu, L.

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat Methods 8(5), 417–423 (2011).
[Crossref]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat Methods 8(5), 417–423 (2011).
[Crossref]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat Methods 8(5), 417–423 (2011).
[Crossref]

Gong, H.

Gouda, T.

S. Nakamura, Y. Saito, T. Gouda, T. Imai, M. Shimazawa, Y. Nishimura, and H. Hara, “Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae,” J Stroke Cerebrovasc Dis 29(11), 105215 (2020).
[Crossref]

Gunn-Moore, F. J.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Gurchenkov, V.

Hara, H.

S. Nakamura, Y. Saito, T. Gouda, T. Imai, M. Shimazawa, Y. Nishimura, and H. Hara, “Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae,” J Stroke Cerebrovasc Dis 29(11), 105215 (2020).
[Crossref]

Haslehurst, P.

Z. Yang, P. Haslehurst, S. Scott, N. Emptage, and K. Dholakia, “A compact light-sheet microscope for the study of the mammalian central nervous system,” Sci Rep 6(1), 26317 (2016).
[Crossref]

Hatch, G.

S. Eisa-Beygi, G. Hatch, S. Noble, M. Ekker, and T. W. Moon, “The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway,” Dev Biol 373(2), 258–266 (2013).
[Crossref]

Hoi, M. P. M.

B. Huang, Z. Y. Zhou, S. Li, X. H. Huang, J. Y. Tang, M. P. M. Hoi, and S. M. Y. Lee, “Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell-cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility,” Pharmacol Res 128, 389–398 (2018).
[Crossref]

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Holland, D. B.

Hosny, N. A.

Hostettler, I. C.

I. C. Hostettler, D. J. Seiffge, and D. J. Werring, “Intracerebral hemorrhage: an update on diagnosis and treatment,” Expert Rev Neurother 19(7), 679–694 (2019).
[Crossref]

Hou, T.

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Huang, B.

B. Huang, Z. Y. Zhou, S. Li, X. H. Huang, J. Y. Tang, M. P. M. Hoi, and S. M. Y. Lee, “Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell-cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility,” Pharmacol Res 128, 389–398 (2018).
[Crossref]

Huang, X. H.

B. Huang, Z. Y. Zhou, S. Li, X. H. Huang, J. Y. Tang, M. P. M. Hoi, and S. M. Y. Lee, “Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell-cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility,” Pharmacol Res 128, 389–398 (2018).
[Crossref]

Hudson, G.

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Huisken, J.

M. Weber and J. Huisken, “In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy,” Swiss Med Wkly 145, w14227 (2015).
[Crossref]

Hurlstone, A.

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Imai, T.

S. Nakamura, Y. Saito, T. Gouda, T. Imai, M. Shimazawa, Y. Nishimura, and H. Hara, “Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae,” J Stroke Cerebrovasc Dis 29(11), 105215 (2020).
[Crossref]

Jin, X.

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Kasher, P. R.

S. Crilly, A. Njegic, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using Zebrafish Larvae to Study the Pathological Consequences of Hemorrhagic Stroke,” J. Vis. Exp. 148, e59716 (2019).
[Crossref]

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Keller, P. J.

W. C. Lemon and P. J. Keller, “Live imaging of nervous system development and function using light-sheet microscopy,” Mol. Reprod. Dev. 82(7-8), 605–618 (2015).
[Crossref]

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref]

Kner, P.

Y. Liu, S. Dale, R. Ball, A. J. VanLeuven, A. Sornborger, J. D. Lauderdale, and P. Kner, “Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy,” Neurophotonics 6(01), 1 (2019).
[Crossref]

Kwan, Y. W.

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Lauderdale, J. D.

Y. Liu, S. Dale, R. Ball, A. J. VanLeuven, A. Sornborger, J. D. Lauderdale, and P. Kner, “Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy,” Neurophotonics 6(01), 1 (2019).
[Crossref]

Laurie, S. E.

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Le, T.

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

Lee, S. M.

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Lee, S. M. Y.

B. Huang, Z. Y. Zhou, S. Li, X. H. Huang, J. Y. Tang, M. P. M. Hoi, and S. M. Y. Lee, “Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell-cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility,” Pharmacol Res 128, 389–398 (2018).
[Crossref]

Lemon, W. C.

W. C. Lemon and P. J. Keller, “Live imaging of nervous system development and function using light-sheet microscopy,” Mol. Reprod. Dev. 82(7-8), 605–618 (2015).
[Crossref]

Leung, G. P. H.

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Li, H.

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Li, J. M.

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref]

Li, S.

B. Huang, Z. Y. Zhou, S. Li, X. H. Huang, J. Y. Tang, M. P. M. Hoi, and S. M. Y. Lee, “Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell-cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility,” Pharmacol Res 128, 389–398 (2018).
[Crossref]

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Liang, Y.

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Liebling, M.

Liu, Y.

Y. Liu, S. Dale, R. Ball, A. J. VanLeuven, A. Sornborger, J. D. Lauderdale, and P. Kner, “Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy,” Neurophotonics 6(01), 1 (2019).
[Crossref]

Liu, Z.

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Luo, Q.

Marti, D.

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

Mei, L.

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat Methods 8(5), 417–423 (2011).
[Crossref]

Mitchell, S. J.

Mitchell, T. J.

Moon, T. W.

S. Eisa-Beygi, G. Hatch, S. Noble, M. Ekker, and T. W. Moon, “The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway,” Dev Biol 373(2), 258–266 (2013).
[Crossref]

Nakamura, S.

S. Nakamura, Y. Saito, T. Gouda, T. Imai, M. Shimazawa, Y. Nishimura, and H. Hara, “Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae,” J Stroke Cerebrovasc Dis 29(11), 105215 (2020).
[Crossref]

Nassoy, P.

Nishimura, Y.

S. Nakamura, Y. Saito, T. Gouda, T. Imai, M. Shimazawa, Y. Nishimura, and H. Hara, “Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae,” J Stroke Cerebrovasc Dis 29(11), 105215 (2020).
[Crossref]

Njegic, A.

S. Crilly, A. Njegic, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using Zebrafish Larvae to Study the Pathological Consequences of Hemorrhagic Stroke,” J. Vis. Exp. 148, e59716 (2019).
[Crossref]

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Noble, S.

S. Eisa-Beygi, G. Hatch, S. Noble, M. Ekker, and T. W. Moon, “The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway,” Dev Biol 373(2), 258–266 (2013).
[Crossref]

Nylk, J.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Orger, M. B.

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref]

Pan, P.

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Pan, W.

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Parry-Jones, A. R.

S. Crilly, A. Njegic, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using Zebrafish Larvae to Study the Pathological Consequences of Hemorrhagic Stroke,” J. Vis. Exp. 148, e59716 (2019).
[Crossref]

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Peterson, R. T.

B. P. Walcott and R. T. Peterson, “Zebrafish models of cerebrovascular disease,” J Cereb Blood Flow Metab 34(4), 571–577 (2014).
[Crossref]

Piksarv, P.

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat Methods 8(5), 417–423 (2011).
[Crossref]

Qin, X.

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Rivers-Auty, J.

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Robson, D. N.

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref]

Rohrbach, A.

Saito, Y.

S. Nakamura, Y. Saito, T. Gouda, T. Imai, M. Shimazawa, Y. Nishimura, and H. Hara, “Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae,” J Stroke Cerebrovasc Dis 29(11), 105215 (2020).
[Crossref]

Scott, S.

Z. Yang, P. Haslehurst, S. Scott, N. Emptage, and K. Dholakia, “A compact light-sheet microscope for the study of the mammalian central nervous system,” Sci Rep 6(1), 26317 (2016).
[Crossref]

Seiffge, D. J.

I. C. Hostettler, D. J. Seiffge, and D. J. Werring, “Intracerebral hemorrhage: an update on diagnosis and treatment,” Expert Rev Neurother 19(7), 679–694 (2019).
[Crossref]

Seyforth, J. A.

Shen, M.

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Shimazawa, M.

S. Nakamura, Y. Saito, T. Gouda, T. Imai, M. Shimazawa, Y. Nishimura, and H. Hara, “Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae,” J Stroke Cerebrovasc Dis 29(11), 105215 (2020).
[Crossref]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Sornborger, A.

Y. Liu, S. Dale, R. Ball, A. J. VanLeuven, A. Sornborger, J. D. Lauderdale, and P. Kner, “Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy,” Neurophotonics 6(01), 1 (2019).
[Crossref]

Spickermann, G.

Srivastava, D. P.

Stingl, A.

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

Tang, J. Y.

B. Huang, Z. Y. Zhou, S. Li, X. H. Huang, J. Y. Tang, M. P. M. Hoi, and S. M. Y. Lee, “Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell-cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility,” Pharmacol Res 128, 389–398 (2018).
[Crossref]

Trinh le, A.

Trivedi, V.

Truong, T. V.

Unterhuber, A.

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

VanLeuven, A. J.

Y. Liu, S. Dale, R. Ball, A. J. VanLeuven, A. Sornborger, J. D. Lauderdale, and P. Kner, “Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy,” Neurophotonics 6(01), 1 (2019).
[Crossref]

Vernon, A. C.

Vettenburg, T.

N. A. Hosny, J. A. Seyforth, G. Spickermann, T. J. Mitchell, P. Almada, R. Chesters, S. J. Mitchell, G. Chennell, A. C. Vernon, K. Cho, D. P. Srivastava, R. Forster, and T. Vettenburg, “Planar Airy beam light-sheet for two-photon microscopy,” Biomed. Opt. Express 11(7), 3927–3935 (2020).
[Crossref]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Walcott, B. P.

B. P. Walcott and R. T. Peterson, “Zebrafish models of cerebrovascular disease,” J Cereb Blood Flow Metab 34(4), 571–577 (2014).
[Crossref]

Wang, L.

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Webb, K.

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Weber, M.

M. Weber and J. Huisken, “In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy,” Swiss Med Wkly 145, w14227 (2015).
[Crossref]

Werring, D. J.

I. C. Hostettler, D. J. Seiffge, and D. J. Werring, “Intracerebral hemorrhage: an update on diagnosis and treatment,” Expert Rev Neurother 19(7), 679–694 (2019).
[Crossref]

Xia, F.

Yang, G.

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Yang, Z.

Z. Yang, P. Haslehurst, S. Scott, N. Emptage, and K. Dholakia, “A compact light-sheet microscope for the study of the mammalian central nervous system,” Sci Rep 6(1), 26317 (2016).
[Crossref]

Z. Yang, L. Mei, F. Xia, Q. Luo, L. Fu, and H. Gong, “Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish,” Biomed. Opt. Express 6(5), 1797–1811 (2015).
[Crossref]

Young, H. L.

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

Zhou, Z. Y.

B. Huang, Z. Y. Zhou, S. Li, X. H. Huang, J. Y. Tang, M. P. M. Hoi, and S. M. Y. Lee, “Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell-cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility,” Pharmacol Res 128, 389–398 (2018).
[Crossref]

Biochem Biophys Res Commun (1)

X. Qin, C. Chen, L. Wang, X. Chen, Y. Liang, X. Jin, W. Pan, Z. Liu, H. Li, and G. Yang, “In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope,” Biochem Biophys Res Commun 557, 8–13 (2021).
[Crossref]

Biomed. Opt. Express (3)

Cell Death Discov. (1)

S. Li, N. Ai, M. Shen, Y. Dang, C. M. Chong, P. Pan, Y. W. Kwan, S. W. Chan, G. P. H. Leung, M. P. M. Hoi, T. Hou, and S. M. Lee, “Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin,” Cell Death Discov. 3(1), 17051 (2017).
[Crossref]

Dev Biol (1)

S. Eisa-Beygi, G. Hatch, S. Noble, M. Ekker, and T. W. Moon, “The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway,” Dev Biol 373(2), 258–266 (2013).
[Crossref]

Expert Rev Neurother (1)

I. C. Hostettler, D. J. Seiffge, and D. J. Werring, “Intracerebral hemorrhage: an update on diagnosis and treatment,” Expert Rev Neurother 19(7), 679–694 (2019).
[Crossref]

F1000Res (1)

S. Crilly, A. Njegic, S. E. Laurie, E. Fotiou, G. Hudson, J. Barrington, K. Webb, H. L. Young, A. P. Badrock, A. Hurlstone, J. Rivers-Auty, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage,” F1000Res 7, 1617 (2018).
[Crossref]

J Cereb Blood Flow Metab (1)

B. P. Walcott and R. T. Peterson, “Zebrafish models of cerebrovascular disease,” J Cereb Blood Flow Metab 34(4), 571–577 (2014).
[Crossref]

J Stroke Cerebrovasc Dis (1)

S. Nakamura, Y. Saito, T. Gouda, T. Imai, M. Shimazawa, Y. Nishimura, and H. Hara, “Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae,” J Stroke Cerebrovasc Dis 29(11), 105215 (2020).
[Crossref]

J. Vis. Exp. (1)

S. Crilly, A. Njegic, A. R. Parry-Jones, S. M. Allan, and P. R. Kasher, “Using Zebrafish Larvae to Study the Pathological Consequences of Hemorrhagic Stroke,” J. Vis. Exp. 148, e59716 (2019).
[Crossref]

Mol. Reprod. Dev. (1)

W. C. Lemon and P. J. Keller, “Live imaging of nervous system development and function using light-sheet microscopy,” Mol. Reprod. Dev. 82(7-8), 605–618 (2015).
[Crossref]

Nat Methods (1)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat Methods 8(5), 417–423 (2011).
[Crossref]

Nat. Methods (2)

M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
[Crossref]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Neurophotonics (1)

Y. Liu, S. Dale, R. Ball, A. J. VanLeuven, A. Sornborger, J. D. Lauderdale, and P. Kner, “Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy,” Neurophotonics 6(01), 1 (2019).
[Crossref]

Opt. Express (1)

Pharmacol Res (1)

B. Huang, Z. Y. Zhou, S. Li, X. H. Huang, J. Y. Tang, M. P. M. Hoi, and S. M. Y. Lee, “Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell-cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility,” Pharmacol Res 128, 389–398 (2018).
[Crossref]

Phys. Rev. Lett. (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Sci Rep (1)

Z. Yang, P. Haslehurst, S. Scott, N. Emptage, and K. Dholakia, “A compact light-sheet microscope for the study of the mammalian central nervous system,” Sci Rep 6(1), 26317 (2016).
[Crossref]

Sci. Rep. (1)

P. Piksarv, D. Marti, T. Le, A. Unterhuber, L. H. Forbes, M. R. Andrews, A. Stingl, W. Drexler, P. E. Andersen, and K. Dholakia, “Integrated single- and two-photon light sheet microscopy using accelerating beams,” Sci. Rep. 7, 1435 (2017).
[Crossref]

Swiss Med Wkly (1)

M. Weber and J. Huisken, “In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy,” Swiss Med Wkly 145, w14227 (2015).
[Crossref]

Supplementary Material (6)

NameDescription
Supplement 1       Supplemental document
Visualization 1       The parabolic propagation trajectory of Airy-like beam used in this paper.
Visualization 2       Distribution of cerebral blood vessels and red blood cells at 50hpf.
Visualization 3       Distribution of cerebral blood vessels and red blood cells at 51hpf.
Visualization 4       Distribution of cerebral blood vessels and red blood cells at 52hpf.
Visualization 5       Distribution of cerebral blood vessels and red blood cells at 53hpf.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Configuration of Airy-like LSFM.
Fig. 2.
Fig. 2. Simulated data for light-sheet illumination with Airy and Airy-like beams. (A-B) Propagation profiles of Airy light-sheet and Airy-like light-sheet along x axis. (C-D) MTF (x, fz) with threshold line at 5%. (E-H) Simulated, recorded, and deconvolved images of the University logo. (I-L) Two-dimensional MTF of Airy beam light-sheet at different planes beyond the waist. (M-P) Two-dimensional MTF of Airy-like beam light-sheet at different planes beyond the waist. (Q-T) MTF for the two light-sheets using single photon excitation at different planes beyond the waist. The spatial frequency, is normalized to 2NA, where λ and NA are the illumination wavelength and the numerical aperture of illumination objective respectively.
Fig. 3.
Fig. 3. Calibration data with standard fluorescent microspheres for Airy (NA= 0.27), Airy-like (NA= 0.27) and Airy (NA= 0.19) light-sheet illuminations. (A, B, C) Deconvolved images of fluorescent microspheres from maximum intensity projections of recorded data. (D) Peak intensity as a function of propagation distance (FOV) for the microspheres illuminated with the conventional Airy (NA= 0.27) light-sheet (pink), the Airy-like (NA= 0.27) light-sheet (blue) and Airy (NA= 0.19) light-sheet (black). To evaluate the illumination uniformity, normal distributions have been fitted to the intensities. The FOV based on normalized fluorescence intensity drop to 1 / e for Airy light-sheet and Airy like light-sheet (E) Full-width at half maximum (FWHM) in z axial of the microsphere images.
Fig. 4.
Fig. 4. Simulated data for light-sheet illumination with two-photon Airy-like and two-photon planner Airy-like beam. (A, B) Propagation profiles of 2-PE Airy-like light-sheet and 2-PE Airy light-sheet along x axis. (C, D) MTF (x, fz) with threshold line at 5%. (E-H) Simulated, recorded, and deconvolved images of the University logo. (I-L) MTF for the two light-sheets using 2-PE at different planes beyond the waist. The spatial frequency, is normalized to 2NA, where λ and NA are the illumination wavelength and the numerical aperture of illumination objective respectively.
Fig. 5.
Fig. 5. Comparison of planar Airy light-sheet and planar Airy-like light-sheet using 2-PE with standard fluorescent microspheres. (A, B, C) Maximum intensity projections of recorded data of fluorescent microspheres. (D) Peak intensity as a function of propagation distance (FOV) for the microspheres illuminated with the 2-PE Airy-like light-sheet (black) and the 2-PE planar Airy-like light-sheet (red). (E) Full-width at half maximum (FWHM) in z axial of the microsphere images. (F, G) Maximum intensity projection of microspheres near the edge of FOV for Airy-like light-sheet in (E) and planar Airy-like light-sheet in (A, B). (H) The intensity profile of the microspheres in panels (E) and (F).
Fig. 6.
Fig. 6. Real-time monitoring of ICH in zebrafish model. (A) The distribution of cerebral blood vessels (green) and red blood cells (red) in zebrafish larva. (B-E) partial 3D diagrams of blood vessel (PrA), corresponding to the position of the yellow dashed box as shown in panel(A). (F-M) Dynamic change of blood vessels from 50.5 to 54hpf (see Visualization 2, Visualization 3, Visualization 4, and Visualization 5).
Fig. 7.
Fig. 7. Analysis of changes in fluorescence intensity of blood vessels (green) and red blood cells (red) within bleeding area. (A) Analysis of changes in fluorescence intensity of blood vessels in the yellow dashed box, with panels on the left and that of red blood cells on the right. (B) Fluorescence intensity ratio of blood vessels and red blood cells in the three bleeding areas at different time points. The value of the fluorescence ratio is derived from the ratio of the total fluorescence of the sub-area to the total fluorescence of a certain area, and data are shown as mean ± standard deviation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( u , v ) = γ  =  1 n A ( γ ) ( u 2 γ + 1 + v 2 γ + 1 ) + β = 1 m B ( β ) s i g n ( u , v ) ( u 2 β + v 2 β )
ϕ ( u , v ) = 7 [ ( u 3 + v 3 ) + s i g n ( u , v ) ( u 2 + v 2 + u 4 + v 4 ) ]
Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved