Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Optics Express
  • Vol. 31,
  • Issue 7,
  • pp. 11156-11163
  • (2023)

1.8 W, high efficiency, pump-enhanced, narrow linewidth optical parametric oscillator at 3.8 µm

Open Access Open Access

Abstract

A high efficiency, continuous-wave, narrow linewidth, pump-enhanced optical parametric oscillator (OPO) at 3.8 µm was demonstrated, which was pumped by a 1064 nm fiber laser with a linewidth of 18 kHz. The low frequency modulation locking technique was employed to stabilize the output power. The wavelengths of signal and idler were 1475.5 nm and 3819.9 nm at 25 °C, respectively. The pump-enhanced structure was applied, leading to a maximum quantum efficiency of over 60% with pump power of 3 W. The maximum output power of idler light is 1.8 W with a linewidth of 363 kHz. The excellent tuning performance of the OPO was also demonstrated. In order to avoid mode-splitting and decrease of pump enhancing factor due to feedback light in the cavity, the crystal was placed obliquely to the pump beam and the maximum output power was increased by 19%. At the maximum output power of idler light, the M2 factors in the x and y directions were 1.30 and 1.33, respectively.

© 2023 Optica Publishing Group

PDF Article

References

  • View by:

  1. Z. Du, J. Li, X. Cao, H. Gao, and Y. Ma, “High-sensitive carbon disulfide sensor using wavelength modulation spectroscopy in the mid-infrared fingerprint region,” Sens. Actuators, B 247, 384–391 (2017).
    [Crossref]
  2. K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34(4), 470–472 (2009).
    [Crossref]
  3. A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14(2), 767–772 (2006).
    [Crossref]
  4. I. Silander, T. Hausmaninger, W. Ma, F. J. M. Harren, and O. Axner, “Doppler-broadened mid-infrared noise-immune cavity-enhanced optical heterodyne molecular spectrometry based on an optical parametric oscillator for trace gas detection,” Opt. Lett. 40(4), 439–442 (2015).
    [Crossref]
  5. S. K. Tokunaga, R. J. Hendricks, M. R. Tarbutt, and B. Darquié, “High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules,” New J. Phys. 19(5), 053006 (2017).
    [Crossref]
  6. J. Shao, Y. Huang, L. Dong, Y. Zhang, and F. K. Tittel, “Automated rapid blood culture sensor system based on diode laser wavelength-modulation spectroscopy for microbial growth analysis,” Sens. Actuators, B 273, 656–663 (2018).
    [Crossref]
  7. W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
    [Crossref]
  8. S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
    [Crossref]
  9. S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
    [Crossref]
  10. H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
    [Crossref]
  11. P. Zeil, N. Thilmann, V. Pasiskevicius, and F. Laurell, “High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating,” Opt. Express 22(24), 29907–29913 (2014).
    [Crossref]
  12. Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
    [Crossref]
  13. S. C. Kumar and M. Ebrahim-Zadeh, “High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 36(13), 2578–2580 (2011).
    [Crossref]
  14. W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
    [Crossref]
  15. J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 µm,” Appl. Sci. 8(8), 1345 (2018).
    [Crossref]
  16. T. Xing, L. Wang, S. Hu, T. Cheng, X. Wu, and H. Jiang, “Widely tunable and narrow-bandwidth pulsed mid-IR PPMgLN-OPO by self-seeding dual etalon-coupled cavities,” Opt. Express 25(25), 31810–31815 (2017).
    [Crossref]
  17. M. K. Shukla and R. Das, “High-Power Single-Frequency Source in the Mid-Infrared Using a Singly Resonant Optical Parametric Oscillator Pumped by Yb-Fiber Laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 5100206 (2018).
    [Crossref]
  18. G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, “Extended mode-hop-free tuning by use of a dual-cavity, pump-enhanced optical parametric oscillator,” Opt. Lett. 25(5), 341–343 (2000).
    [Crossref]
  19. I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78(7), 871–873 (2001).
    [Crossref]
  20. D. J. M. Stothard, I. D. Lindsay, and M. H. Dunn, “Continuous-wave pump-enhanced optical parametric oscillator with ring resonator for wide and continuous tuning of single-frequency radiation,” Opt. Express 12(3), 502–511 (2004).
    [Crossref]
  21. J. W. Thomas, A. Polak, G. M. Bonner, D. Logie, M. H. Dunn, J. C. F. Matthews, and D. J. M. Stothard, “Widely-tunable mid-infrared ring cavity pump-enhanced OPO and application in photo-thermal interferometric trace ethane detection,” Opt. Express 28(4), 4550–4562 (2020).
    [Crossref]
  22. X. J. Yan, Z. H. Zhang, X. K. Xu, S. J. Ren, W. G. Ma, and W. Tan, “Theoretical optimization of the conversion efficiency in a pump-enhanced singly resonant optical parametric oscillator,” Optoelectron. Adv. Mater. - Rapid Commun. 16(1-2), 1–9 (2022).
  23. W. Tan, W. G. Ma, Z. J. Liu, X. J. Yan, X. D. Qiu, and X. Y. Zhang, “Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser,” Opt. Commun. 458, 124680 (2020).
    [Crossref]
  24. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  25. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
    [Crossref]
  26. P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
    [Crossref]
  27. K. Huang, J. W. Gan, J. Zeng, Q. Hao, K. W. Yang, M. Yan, and H. P. Zeng, “Observation of spectral mode splitting in a pump-enhanced ring cavity for mid-infrared generation,” Opt. Express 27(8), 11766–11775 (2019).
    [Crossref]
  28. A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J. J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102(2), 367–374 (2011).
    [Crossref]
  29. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
    [Crossref]
  30. I. D. Lindsay, D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “Continuous-wave, pump-enhanced optical parametric oscillator based on periodically-poled RbTiOAsO4,” Opt. Express 11(2), 134–140 (2003).
    [Crossref]
  31. I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization,” Opt. Lett. 40(20), 4743–4746 (2015).
    [Crossref]
  32. Z. T. Zhang, Y. Tan, J. Wang, C. F. Cheng, Y. R. Sun, A. W. Liu, and S. M. Hu, “Seeded optical parametric oscillator light source for precision spectroscopy,” Opt. Lett. 45(4), 1013–1016 (2020).
    [Crossref]

2022 (2)

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

X. J. Yan, Z. H. Zhang, X. K. Xu, S. J. Ren, W. G. Ma, and W. Tan, “Theoretical optimization of the conversion efficiency in a pump-enhanced singly resonant optical parametric oscillator,” Optoelectron. Adv. Mater. - Rapid Commun. 16(1-2), 1–9 (2022).

2020 (5)

W. Tan, W. G. Ma, Z. J. Liu, X. J. Yan, X. D. Qiu, and X. Y. Zhang, “Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser,” Opt. Commun. 458, 124680 (2020).
[Crossref]

J. W. Thomas, A. Polak, G. M. Bonner, D. Logie, M. H. Dunn, J. C. F. Matthews, and D. J. M. Stothard, “Widely-tunable mid-infrared ring cavity pump-enhanced OPO and application in photo-thermal interferometric trace ethane detection,” Opt. Express 28(4), 4550–4562 (2020).
[Crossref]

Z. T. Zhang, Y. Tan, J. Wang, C. F. Cheng, Y. R. Sun, A. W. Liu, and S. M. Hu, “Seeded optical parametric oscillator light source for precision spectroscopy,” Opt. Lett. 45(4), 1013–1016 (2020).
[Crossref]

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
[Crossref]

2019 (2)

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

K. Huang, J. W. Gan, J. Zeng, Q. Hao, K. W. Yang, M. Yan, and H. P. Zeng, “Observation of spectral mode splitting in a pump-enhanced ring cavity for mid-infrared generation,” Opt. Express 27(8), 11766–11775 (2019).
[Crossref]

2018 (3)

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 µm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

M. K. Shukla and R. Das, “High-Power Single-Frequency Source in the Mid-Infrared Using a Singly Resonant Optical Parametric Oscillator Pumped by Yb-Fiber Laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 5100206 (2018).
[Crossref]

J. Shao, Y. Huang, L. Dong, Y. Zhang, and F. K. Tittel, “Automated rapid blood culture sensor system based on diode laser wavelength-modulation spectroscopy for microbial growth analysis,” Sens. Actuators, B 273, 656–663 (2018).
[Crossref]

2017 (4)

T. Xing, L. Wang, S. Hu, T. Cheng, X. Wu, and H. Jiang, “Widely tunable and narrow-bandwidth pulsed mid-IR PPMgLN-OPO by self-seeding dual etalon-coupled cavities,” Opt. Express 25(25), 31810–31815 (2017).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Z. Du, J. Li, X. Cao, H. Gao, and Y. Ma, “High-sensitive carbon disulfide sensor using wavelength modulation spectroscopy in the mid-infrared fingerprint region,” Sens. Actuators, B 247, 384–391 (2017).
[Crossref]

S. K. Tokunaga, R. J. Hendricks, M. R. Tarbutt, and B. Darquié, “High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules,” New J. Phys. 19(5), 053006 (2017).
[Crossref]

2015 (2)

2014 (1)

2013 (1)

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

2011 (2)

S. C. Kumar and M. Ebrahim-Zadeh, “High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 36(13), 2578–2580 (2011).
[Crossref]

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J. J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102(2), 367–374 (2011).
[Crossref]

2009 (1)

2008 (1)

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

2006 (1)

2004 (1)

2003 (1)

2001 (1)

I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78(7), 871–873 (2001).
[Crossref]

2000 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

1966 (1)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
[Crossref]

Andrieux, E.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J. J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102(2), 367–374 (2011).
[Crossref]

Ashkin, A.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
[Crossref]

Axner, O.

Bao, C. Y.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Bonner, G. M.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
[Crossref]

Briaudeau, S.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J. J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102(2), 367–374 (2011).
[Crossref]

Büchter, K.-D. F.

Cancio, P.

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

Cao, Q. T.

H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
[Crossref]

Cao, X.

Z. Du, J. Li, X. Cao, H. Gao, and Y. Ma, “High-sensitive carbon disulfide sensor using wavelength modulation spectroscopy in the mid-infrared fingerprint region,” Sens. Actuators, B 247, 384–391 (2017).
[Crossref]

Chen, H. J.

H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
[Crossref]

Chen, X. H.

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Cheng, C. F.

Cheng, P.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 µm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Cheng, T.

Cong, Z. H.

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Darquié, B.

S. K. Tokunaga, R. J. Hendricks, M. R. Tarbutt, and B. Darquié, “High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules,” New J. Phys. 19(5), 053006 (2017).
[Crossref]

Das, R.

M. K. Shukla and R. Das, “High-Power Single-Frequency Source in the Mid-Infrared Using a Singly Resonant Optical Parametric Oscillator Pumped by Yb-Fiber Laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 5100206 (2018).
[Crossref]

De Natale, P.

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization,” Opt. Lett. 40(20), 4743–4746 (2015).
[Crossref]

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

De Rosa, M.

Dong, C. H.

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

Dong, L.

J. Shao, Y. Huang, L. Dong, Y. Zhang, and F. K. Tittel, “Automated rapid blood culture sensor system based on diode laser wavelength-modulation spectroscopy for microbial growth analysis,” Sens. Actuators, B 273, 656–663 (2018).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Du, Z.

Z. Du, J. Li, X. Cao, H. Gao, and Y. Ma, “High-sensitive carbon disulfide sensor using wavelength modulation spectroscopy in the mid-infrared fingerprint region,” Sens. Actuators, B 247, 384–391 (2017).
[Crossref]

Dunn, M. H.

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
[Crossref]

Ebrahimzadeh, M.

I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78(7), 871–873 (2001).
[Crossref]

G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, “Extended mode-hop-free tuning by use of a dual-cavity, pump-enhanced optical parametric oscillator,” Opt. Lett. 25(5), 341–343 (2000).
[Crossref]

Ebrahim-Zadeh, M.

Fejer, M. M.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Galli, I.

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

Gan, J. W.

Gao, H.

Z. Du, J. Li, X. Cao, H. Gao, and Y. Ma, “High-sensitive carbon disulfide sensor using wavelength modulation spectroscopy in the mid-infrared fingerprint region,” Sens. Actuators, B 247, 384–391 (2017).
[Crossref]

Gao, J. R.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Giusfredi, G.

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

Gong, Q. H.

H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
[Crossref]

Guo, G. C.

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Han, K.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Hao, Q.

Harren, F. J. M.

Hausmaninger, T.

Henderson, A.

Hendricks, R. J.

S. K. Tokunaga, R. J. Hendricks, M. R. Tarbutt, and B. Darquié, “High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules,” New J. Phys. 19(5), 053006 (2017).
[Crossref]

Herrmann, H.

Himbert, M.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J. J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102(2), 367–374 (2011).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Hu, S.

Hu, S. M.

Huang, K.

Huang, Y.

J. Shao, Y. Huang, L. Dong, Y. Zhang, and F. K. Tittel, “Automated rapid blood culture sensor system based on diode laser wavelength-modulation spectroscopy for microbial growth analysis,” Sens. Actuators, B 273, 656–663 (2018).
[Crossref]

Jaramillo-Villegas, J. A.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Ji, Q. X.

H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
[Crossref]

Jiang, H.

Kim, S.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Kumar, S. C.

Langrock, C.

Laurell, F.

Leaird, D. E.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Li, D. M.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Li, J.

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

Z. Du, J. Li, X. Cao, H. Gao, and Y. Ma, “High-sensitive carbon disulfide sensor using wavelength modulation spectroscopy in the mid-infrared fingerprint region,” Sens. Actuators, B 247, 384–391 (2017).
[Crossref]

Li, M.

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

Lindsay, I. D.

Liu, A. W.

Liu, Y.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 µm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Liu, Z. J.

W. Tan, W. G. Ma, Z. J. Liu, X. J. Yan, X. D. Qiu, and X. Y. Zhang, “Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser,” Opt. Commun. 458, 124680 (2020).
[Crossref]

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Logie, D.

Ma, W.

Ma, W. G.

X. J. Yan, Z. H. Zhang, X. K. Xu, S. J. Ren, W. G. Ma, and W. Tan, “Theoretical optimization of the conversion efficiency in a pump-enhanced singly resonant optical parametric oscillator,” Optoelectron. Adv. Mater. - Rapid Commun. 16(1-2), 1–9 (2022).

W. Tan, W. G. Ma, Z. J. Liu, X. J. Yan, X. D. Qiu, and X. Y. Zhang, “Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser,” Opt. Commun. 458, 124680 (2020).
[Crossref]

Ma, Y.

Z. Du, J. Li, X. Cao, H. Gao, and Y. Ma, “High-sensitive carbon disulfide sensor using wavelength modulation spectroscopy in the mid-infrared fingerprint region,” Sens. Actuators, B 247, 384–391 (2017).
[Crossref]

Maddaloni, P.

Matthews, J. C. F.

Mazzotti, D.

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

McGloin, D.

Ming, X. S.

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

Mosca, S.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Niu, R.

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

Parisi, M.

Pasiskevicius, V.

Peng, J. L.

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

Peng, Y. F.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Petridis, C.

I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78(7), 871–873 (2001).
[Crossref]

Polak, A.

Qi, M. H.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Qin, Z. G.

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Qiu, X. D.

W. Tan, W. G. Ma, Z. J. Liu, X. J. Yan, X. D. Qiu, and X. Y. Zhang, “Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser,” Opt. Commun. 458, 124680 (2020).
[Crossref]

Rae, C. F.

Rao, H.

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Ren, S. J.

X. J. Yan, Z. H. Zhang, X. K. Xu, S. J. Ren, W. G. Ma, and W. Tan, “Theoretical optimization of the conversion efficiency in a pump-enhanced singly resonant optical parametric oscillator,” Optoelectron. Adv. Mater. - Rapid Commun. 16(1-2), 1–9 (2022).

Ricciardi, I.

Rihan, A.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J. J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102(2), 367–374 (2011).
[Crossref]

Santamaria, L.

Shao, J.

J. Shao, Y. Huang, L. Dong, Y. Zhang, and F. K. Tittel, “Automated rapid blood culture sensor system based on diode laser wavelength-modulation spectroscopy for microbial growth analysis,” Sens. Actuators, B 273, 656–663 (2018).
[Crossref]

Shi, L.

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

Shukla, M. K.

M. K. Shukla and R. Das, “High-Power Single-Frequency Source in the Mid-Infrared Using a Singly Resonant Optical Parametric Oscillator Pumped by Yb-Fiber Laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 5100206 (2018).
[Crossref]

Silander, I.

Sohler, W.

Stafford, R.

Stothard, D. J. M.

Sun, Q. B.

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

Sun, Y. R.

Tan, W.

X. J. Yan, Z. H. Zhang, X. K. Xu, S. J. Ren, W. G. Ma, and W. Tan, “Theoretical optimization of the conversion efficiency in a pump-enhanced singly resonant optical parametric oscillator,” Optoelectron. Adv. Mater. - Rapid Commun. 16(1-2), 1–9 (2022).

W. Tan, W. G. Ma, Z. J. Liu, X. J. Yan, X. D. Qiu, and X. Y. Zhang, “Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser,” Opt. Commun. 458, 124680 (2020).
[Crossref]

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Tan, Y.

Tang, J.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 µm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Tarbutt, M. R.

S. K. Tokunaga, R. J. Hendricks, M. R. Tarbutt, and B. Darquié, “High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules,” New J. Phys. 19(5), 053006 (2017).
[Crossref]

Thilmann, N.

Thomas, J. W.

Tittel, F. K.

J. Shao, Y. Huang, L. Dong, Y. Zhang, and F. K. Tittel, “Automated rapid blood culture sensor system based on diode laser wavelength-modulation spectroscopy for microbial growth analysis,” Sens. Actuators, B 273, 656–663 (2018).
[Crossref]

Tokunaga, S. K.

S. K. Tokunaga, R. J. Hendricks, M. R. Tarbutt, and B. Darquié, “High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules,” New J. Phys. 19(5), 053006 (2017).
[Crossref]

Turnbull, G. A.

Wan, S.

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

Wang, C.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Wang, G.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 µm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Wang, H. M.

H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
[Crossref]

Wang, J.

Wang, K. Y.

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

Wang, L.

Wang, L. R.

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

Wang, W. M.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Wang, Y.

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

Wang, Z. Y.

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Wei, X. B.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Weiner, A. M.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Wu, W.

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

Wu, X.

Xiao, Y. F.

H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
[Crossref]

Xie, G.

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Xing, T.

Xu, F.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 µm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Xu, X. K.

X. J. Yan, Z. H. Zhang, X. K. Xu, S. J. Ren, W. G. Ma, and W. Tan, “Theoretical optimization of the conversion efficiency in a pump-enhanced singly resonant optical parametric oscillator,” Optoelectron. Adv. Mater. - Rapid Commun. 16(1-2), 1–9 (2022).

Xuan, Y.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Xue, X. X.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

Yan, M.

Yan, X. J.

X. J. Yan, Z. H. Zhang, X. K. Xu, S. J. Ren, W. G. Ma, and W. Tan, “Theoretical optimization of the conversion efficiency in a pump-enhanced singly resonant optical parametric oscillator,” Optoelectron. Adv. Mater. - Rapid Commun. 16(1-2), 1–9 (2022).

W. Tan, W. G. Ma, Z. J. Liu, X. J. Yan, X. D. Qiu, and X. Y. Zhang, “Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser,” Opt. Commun. 458, 124680 (2020).
[Crossref]

Yang, K. W.

Yang, Q. F.

H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
[Crossref]

Yang, Y.

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

Yang, Z. M.

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Yi, X.

H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
[Crossref]

Zanon-Willette, T.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J. J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102(2), 367–374 (2011).
[Crossref]

Zeil, P.

Zeng, H. P.

Zeng, J.

Zhang, S. S.

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Zhang, X. Y.

W. Tan, W. G. Ma, Z. J. Liu, X. J. Yan, X. D. Qiu, and X. Y. Zhang, “Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser,” Opt. Commun. 458, 124680 (2020).
[Crossref]

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Zhang, Y.

J. Shao, Y. Huang, L. Dong, Y. Zhang, and F. K. Tittel, “Automated rapid blood culture sensor system based on diode laser wavelength-modulation spectroscopy for microbial growth analysis,” Sens. Actuators, B 273, 656–663 (2018).
[Crossref]

Zhang, Z. H.

X. J. Yan, Z. H. Zhang, X. K. Xu, S. J. Ren, W. G. Ma, and W. Tan, “Theoretical optimization of the conversion efficiency in a pump-enhanced singly resonant optical parametric oscillator,” Optoelectron. Adv. Mater. - Rapid Commun. 16(1-2), 1–9 (2022).

Zhang, Z. T.

Zhao, E. B.

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Zhao, J.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 µm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Zhao, W.

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

Zhao, Z. G.

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

Zhou, X.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 µm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Zondy, J. J.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J. J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102(2), 367–374 (2011).
[Crossref]

Zou, C. L.

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

Appl. Phys. B (1)

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J. J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102(2), 367–374 (2011).
[Crossref]

Appl. Phys. B: Photophys. Laser Chem. (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (1)

I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78(7), 871–873 (2001).
[Crossref]

Appl. Sci. (1)

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 µm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. K. Shukla and R. Das, “High-Power Single-Frequency Source in the Mid-Infrared Using a Singly Resonant Optical Parametric Oscillator Pumped by Yb-Fiber Laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 5100206 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Tan, Z. J. Liu, Z. H. Cong, Z. G. Zhao, Z. G. Qin, X. H. Chen, Z. M. Yang, H. Rao, E. B. Zhao, S. S. Zhang, and X. Y. Zhang, “4.4 W, Continuous-Wave, Narrow Linewidth Optical Parametric Oscillator at 3.77 µm,” IEEE Photonics Technol. Lett. 31(14), 1131–1134 (2019).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Laser Phys. (1)

Y. F. Peng, X. B. Wei, G. Xie, J. R. Gao, D. M. Li, and W. M. Wang, “A high-power narrow-linewidth optical parametric oscillator based on PPMgLN,” Laser Phys. 23(5), 055405 (2013).
[Crossref]

Nat. Commun. (2)

H. J. Chen, Q. X. Ji, H. M. Wang, Q. F. Yang, Q. T. Cao, Q. H. Gong, X. Yi, and Y. F. Xiao, “Chaos-assisted two-octave-spanning microcombs,” Nat. Commun. 11(1), 2336 (2020).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. X. Xue, C. Y. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8(1), 372 (2017).
[Crossref]

New J. Phys. (1)

S. K. Tokunaga, R. J. Hendricks, M. R. Tarbutt, and B. Darquié, “High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules,” New J. Phys. 19(5), 053006 (2017).
[Crossref]

Opt. Commun. (1)

W. Tan, W. G. Ma, Z. J. Liu, X. J. Yan, X. D. Qiu, and X. Y. Zhang, “Intensity noise self-suppression in a high-efficiency doubly resonant sum frequency mixing red laser,” Opt. Commun. 458, 124680 (2020).
[Crossref]

Opt. Express (7)

D. J. M. Stothard, I. D. Lindsay, and M. H. Dunn, “Continuous-wave pump-enhanced optical parametric oscillator with ring resonator for wide and continuous tuning of single-frequency radiation,” Opt. Express 12(3), 502–511 (2004).
[Crossref]

J. W. Thomas, A. Polak, G. M. Bonner, D. Logie, M. H. Dunn, J. C. F. Matthews, and D. J. M. Stothard, “Widely-tunable mid-infrared ring cavity pump-enhanced OPO and application in photo-thermal interferometric trace ethane detection,” Opt. Express 28(4), 4550–4562 (2020).
[Crossref]

K. Huang, J. W. Gan, J. Zeng, Q. Hao, K. W. Yang, M. Yan, and H. P. Zeng, “Observation of spectral mode splitting in a pump-enhanced ring cavity for mid-infrared generation,” Opt. Express 27(8), 11766–11775 (2019).
[Crossref]

I. D. Lindsay, D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “Continuous-wave, pump-enhanced optical parametric oscillator based on periodically-poled RbTiOAsO4,” Opt. Express 11(2), 134–140 (2003).
[Crossref]

A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14(2), 767–772 (2006).
[Crossref]

P. Zeil, N. Thilmann, V. Pasiskevicius, and F. Laurell, “High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating,” Opt. Express 22(24), 29907–29913 (2014).
[Crossref]

T. Xing, L. Wang, S. Hu, T. Cheng, X. Wu, and H. Jiang, “Widely tunable and narrow-bandwidth pulsed mid-IR PPMgLN-OPO by self-seeding dual etalon-coupled cavities,” Opt. Express 25(25), 31810–31815 (2017).
[Crossref]

Opt. Lett. (6)

Optoelectron. Adv. Mater.?-?Rapid Commun. (1)

X. J. Yan, Z. H. Zhang, X. K. Xu, S. J. Ren, W. G. Ma, and W. Tan, “Theoretical optimization of the conversion efficiency in a pump-enhanced singly resonant optical parametric oscillator,” Optoelectron. Adv. Mater. - Rapid Commun. 16(1-2), 1–9 (2022).

Photonics Res. (2)

S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, “Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators,” Photonics Res. 8(8), 1342–1349 (2020).
[Crossref]

W. Wu, Q. B. Sun, Y. Wang, Y. Yang, X. S. Ming, L. Shi, K. Y. Wang, W. Zhao, and L. R. Wang, “Mid-infrared broadband optical frequency comb generated in MgF2 resonators,” Photonics Res. 10(8), 1931–1936 (2022).
[Crossref]

Proc. SPIE (1)

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

Sens. Actuators, B (2)

J. Shao, Y. Huang, L. Dong, Y. Zhang, and F. K. Tittel, “Automated rapid blood culture sensor system based on diode laser wavelength-modulation spectroscopy for microbial growth analysis,” Sens. Actuators, B 273, 656–663 (2018).
[Crossref]

Z. Du, J. Li, X. Cao, H. Gao, and Y. Ma, “High-sensitive carbon disulfide sensor using wavelength modulation spectroscopy in the mid-infrared fingerprint region,” Sens. Actuators, B 247, 384–391 (2017).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved