Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Investigation of extraordinary optical transmission and Faraday effect in one-dimensional metallic-magnetic gratings

Open Access Open Access

Abstract

We have investigated extraordinary optical transmission (EOT) with enhanced Faraday effect in one-dimensional metallic-magnetic slit arrays under polar magnetization using the rigorous coupled-wave analysis performed by the Airy-like internal reflection series. The roles of surface plasmon polaritons and quasi-guided waves are studied in which the latter plays a key role. Based on the mechanism of EOT with an enhanced Faraday effect, both enhanced transmittance and enhanced Faraday effect are optimized by adjusting the geometric parameters of slit arrays evaluated by the figure of merit.

©2008 Optical Society of America

1. Introduction

Regarding extraordinary optical transmission (EOT) [1], many researchers have carried out extensive theoretical and experimental works on one-dimensional (1D) slit and two-dimensional (2D) hole arrays [2, 3, 4, 5]. EOT is a phenomenon in which light is transmitted with greater efficiency than unity (when normalized to the area of slits or holes) [1, 4, 6]. Furthermore, magneto-optical (MO) Faraday and Kerr effects are of interest for optical readout of magnetically stored information in erasable video and audio disks. Recently, Belotelov et al. exhibited EOT with an enhanced MO Faraday effect in both 1D and 2D bilayer systems consisting of a thin metallic layer perforated with slit and hole arrays and a uniform magnetic layer [7, 8]. However, obtaining enhanced optical transmittance with great Faraday effect is difficult [9], as in the case of reflectance with Kerr effect [10, 11]. Therefore, efforts have been made to achieve both EOT and MO Faraday effect simultaneously [12]. In Refs. 7 and 8, researchers attributed EOT with an enhanced Faraday effect to the surface plasmon polaritons (SPPs) coupled with the quasi-guided waves. So far, the origin of EOT from the novel metallic arrays [13, 14] has not been completely understood, even for the compound structures of the arrays with dielectric films [15, 16]. More importantly, there are only a few works have been done on EOT with an enhanced MO effect.

In this paper, we investigate the physics of EOT with enhanced Faraday effect. The rigorous coupled-wave analysis (RCWA) performed by the Airy-like internal reflection series (AIRS) is utilized to analyze both EOT and MO Faraday effect together in one-dimensional metallicmagnetic slit arrays. The roles of SPPs and quasi-guided waves playing in the system are evaluated. For the mechanism of EOT with an enhanced Faraday effect, we also discuss how to optimize EOT and Faraday effect in order to obtain a larger figure of merit (FOM).

2. Model description

Figure 1 shows a bilayer system consisting of a gold periodic array and a uniform magnetic film, Bi-substituted yttrium iron garnet (Bi:YIG) studied in Refs. 8. The bilayer is identified with period d, bar width w, thickness of array h1, and thickness of magnetic film h2. We assume that a transverse-magnetic (TM) light is incident on the bilayer system, where the magnetic component of light is polarized along the slits and the incident is placed on the yz plane, and the magnetic film is magnetized perpendicularly to the surface [17].

 figure: Fig. 1.

Fig. 1. (Color online) Schematic representation of the one-dimensional metallic-magnetic grating under polar magnetization.

Download Full Size | PPT Slide | PDF

Concerning both optical andMOproperties of the bilayer system of Fig.1, the RCWA, implemented by the AIRS is employed. This approach has been validated on both isotropic [18] and anisotropic periodic micro- and nanostructures [19]. In the frame of RCWA, all the components of the electromagnetic fields and the permittivity are expended into the generalized Fourier series with a truncation of nmax. Substituting them into the time-harmonic Maxwell’s equations, a system composed of ordinary differential equations is obtained. Then the following procedure is different from the conventional transfer-matrix or scattering-matrix implementations. Here we match the boundary conditions at each interface and utilize the multiple reflection with the AIRS. The transmission matrix can be expressed as a function of interfacial (R J,0, RJ,J+1, TJ,J+1, and T 0,J) and phase matrices P J:

T0,J+1=TJ,J+1(1QJ)1PJT0,J,

where QJ=P J R J,0 P J R J,J+1 and the subscripts denote the index of different layers. Thus, the final transmission matrix is always solvable through this recursive algorithm regardless of the number of layers. Finally, these 2(2n max+1) equations can be solved to acquire the transmitted amplitudes. Accordingly both Faraday rotation and ellipticity can be calculated.

For the numerical simulations, the same parameters in Refs. [7] and [8]are used. The permittivity of gold film is fitted into the Drude model ε1-ω2p/(ω2-iγω), where ε =7.9, ωp=8.77 eV, and γ=0.075 eV. For polar MO configuration, the permittivity components of Bi:YIG are as following: εxx=εyy=εzz=5.5-i0.0025 and εxy=-εyx=(0.15-i)×10-2.

3. Results and discussion

 figure: Fig. 2.

Fig. 2. (Color online) Transmittance (black lines) and MO Faraday (red lines) spectra at normal incidence with TM polarization. Solid lines : a bilayer system consisting of the gold slits array (d=750 nm, w=675 nm, h 1=75 nm) and the Bi:YIG layer (h 2=547 nm); Dash lines: a combination of the gold film without slits and the Bi:YIG layer; Dot line: single Bi:YIG layer; Dash dot line: the gold slits array. Arrow indicates the wavelength of λSP.

Download Full Size | PPT Slide | PDF

In comparison with the transmittance and the MO Faraday spectra in Ref. 8 the results are similar. In the bilayer structure consisting of the gold slits arrays and the Bi:YIG film, Fig. 2 shows that the transmittance and the Faraday peaks are located at 894 nm with the amplitudes of 0.3 and 1.7°, respectively. Considering various combinations of the gold film and magnetic layer we analyze the EOT and MO Faraday effect as follows. For the first case, we set only a gold film without any slits on the top of the Bi:YIG layer. Both the transmittance and the Faraday effect (dash lines) are insignificant compared with those of the structure of Fig. 1 (solid lines). For the second case, we set only a single Bi:YIG layer with the same thickness of 547 nm. The Faraday rotation is around 0.5 degree much less than that of the bilayer structure; no distinct Faraday peak is observed even though the transmittance is fairly high, exceeding the scale of Fig. 2. For the third case, we set only the gold slits array, which is nearly opaque with the transmittance less than 0.02. Obviously, the electromagnetic waves are unable to be transmitted in the array without the Bi:YIG layer, since a critical thickness is needed for a single metallic array to realize EOT as well as the width of slits [2].

Concerning the origins of EOT with an enhancement of Faraday effect in both 1D and 2D arrays, Belotelov et al. attributed these origins to the SPPs coupling with quasi-guided waves [7, 8]. In order to elucidate the roles which SPPs play in 1D arrays, we investigate the SPP wavelengths λSP of a flat interface [13, 20, 21], which is given by

λSP=dm[Re(ε1εdε1+εd)±sinθi],

where m, θi, and ε1 are a nonzero relative integer, the incident angle, and the permittivity of metallic materials, respectively. The εd is the permittivity of air or magnetic medium and θi=0 for normal incidence. Having the period d=750 nm, calculation shows that λSP=960 nm at the metallic-magnetic interface, while λSP=760 nm at the air-metallic interface in the range of interest. Notably, no resonant peak is located nearbyλ SP, as shown by the arrow in Fig. 2, except the tiny peaks in both the transmittance and Faraday spectra.

 figure: Fig. 3.

Fig. 3. (Color online) (a):Transmittance (black lines) and MO Faraday (red lines) spectra with the different period d=650 (dot lines), 700 (dash lines), 750 (solid lines), and 800 nm (dash dot lines); (b):Wavelength of resonant peaks of both transmittance and Faraday effect as a function of array period d.

Download Full Size | PPT Slide | PDF

Generally, the dependence of the peak position on the period is a usual way to judge whether the origin of EOT peaks is from SPPs [4], since λSP is sensitive to the period d according to Eq. (2). The relation between the resonant peaks and the period d is illustrated in Fig. 3. while the period decreases, the resonant peaks are blueshifted and vice versa, similar to the result of Ref. 4. However SPPs do not play a key role here, because of the discrepancy between the EOT and the calculated λSP. The incident beam irradiates at the gold array, which imposes an additional momentum on the incident wave through the grating momentum wave vector. Hence, we have

β=k0sinθi+2πdn,

where β, k0 and n are the transverse wavenumber, the incident wavenumber, and a coupling integer, respectively. Subsequently, a resonant peak might be excited if the transverse wavenumber satisfies Eq. (4), responsible for the guided waves [14, 22] as shown below,

itan(kz2h2)=α2(α1+α3)α22α1α3,

where αi=kzi/εi for TM polarization, while αi=kzi for TE (transverse electric) polarization; kzi=εik02β2, for i=1,2,3 denoting the metallic, the magnetic, and the surrounding medium, respectively. From Eq. (4), we can derive the relation: the increase of d gives rise to the decrease of β, Without varying the thickness h 2, in order to satisfy this equation, k 0 should be reduced,(i.e., to make the wavelength larger), which leads to the redshift. Therefore, in this bilayer system, the dependence of resonant peaks on the period is ascribed to the influence of the additional momentum from the grating on the guided waves rather than the coupling of SPPs.

 figure: Fig. 4.

Fig. 4. (Color online) (a): Transmittance (black points) and MO Faraday (red points) vs. the bar width from w=550 to 675 nm at an interval of 25 nm;(b): Figure of merit vs. the bar width from w=550 to 675 nm at an interval of 25 nm; (c): Transmittance (black lines) and MO Faraday (red lines) spectra with the different bar width and thickness of the magnetic layer: w=675 and h 2=547 nm (solid lines); w=600 and h 2=515 nm (dash lines).

Download Full Size | PPT Slide | PDF

In a thicker metallic layer the light transmittance may be suppressed or lead to the extra resonances, as demonstrated in Refs. 2 and 8. A way to optimize the EOT with enhanced Faraday effect in this bilayer is to adjust the bar width w. At a point of view from the effective refractive index, the variation of w gives rise to the changes in the effective refractive index of metallic gratings[23]. Correspondingly, the optical and the MO properties might be improved. For the MO Faraday effect, the FOM is employed to evaluate the trade-off between them, defined as the product of the modulus of the Faraday angle and the square root of the transmittance (θF·√T) [24]. The relation of the FOM with the bar width wis shown in Fig. 4(a), with an optimal bar width around w=600 nm, where the FOM is improved from 0.96 in Ref. 8 to 2.1 here. The transmittance and the Faraday spectra of the bilayer system with the suboptimal and the optimal bar width are shown in Fig. 4(b). Explicitly, the small w benefits the interaction between the quasi-guided waves and the magnetic layer while it is likely to suppress the localization of light leading to the broadening of peaks [25], shown in 4(c). However, the further decrease of w does not contribute to enhance the Faraday effect any more even though the transmittance increases. And it might also complicate this study due to the introduction of more modes, such as propagated mode [26]. When w is set to 600 nm, the transmittance and the Faraday angle nearly reach 0.6 and 3° respectively. At the same time, the thickness of the magnetic layer goes down to 515 nm from 547 nm, compared with the case of w=675 nm in Ref. 8.

Interestingly, the transmittance of TE-polarized incidence is up to 0.35 at w=600 nm (not shown here), but still less than the threshold to excite the cavity resonant mode for TE-polarized light [25]. It is well known that only TM-polarized light can excite the coupled SPPs [27, 28], because the SPPs have a TM-wave like character [14, 20]. Therefore, the appearance of TE-polarized transmission has a further negative effect on the roles of SPPs in the bilayer system. Figure. 5 exhibits that the resonant transmission appears discontinuously with the thickness of magnetic layer, which is exactly the character of quasi-guided waves. According to the transcendent Eq. (4), certain wavelength have a certain corresponding thickness given by the graphical solution [22]. However, Eq. (4) can be used only to estimate the situation qualitatively, because the effective refractive index of metallic layer depends on the transverse geometrical parameters. Furthermore, the resonant peaks are blueshifted with the decrease of h 2 (see Fig. 4), even with different width of slits, which is also illustrated in Fig. 5.

 figure: Fig. 5.

Fig. 5. (Color online) (a):Transmittance spectra as a function of both wavelength and thickness of the magnetic layer h 2 with TM-polarized incidence. Here d=750 nm, w=600 nm, and h 1=75 nm;(b):Top view of (a).

Download Full Size | PPT Slide | PDF

Additionally, the line shapes are asymmetric in that 2D system [7], attributed to a character of SPPs [29, 30], while all line shapes are symmetric in 1D system here. More important, the resonant peak occurs at 963nm in that 2D structure which is fairly close to the SPP resonance at λSP=960 nm expected from Eq. (2) with a period of 750nm. Therefore, we strongly believe that the physical origin of EOT with the enhancement of Faraday effect in 1D systems is different from that in 2D systems. In 2D hole arrays, the physical origin might be induced by SPPs coupling with quasi-guided waves, whereas the latter plays much more crucial roles than SPPs in 1D slit arrays.

4. Conclusion

The rigorous coupled-wave analysis performed by the Airy-like internal reflection series is used to study the optical and MO properties in 1D bilayer system, where EOT with an enhanced Faraday effect is presented. In order to understand the origin, the investigation is carried out mainly for the following five aspects: the peak of SPPs λ SP; the dependence of resonant peaks on the period; the relation of those peaks to the thickness of magnetic layers; the TE-polarized transmission; and line shapes which definitely reveal that the quasi-guided wave plays a more crucial role in this system than SPPs. Moreover, the FOM is improved from 0.96 to 2.1 by changing the width of slits owing to the variation of the effective refractive index of the gold slit array. For this enhancement, we have a thinner magnetic layer compared to the previously reported one by Belotelov et al.[8].

Acknowledgments

This work was supported by the Creative Research Initiative Program (Center for Photon Information Processing) by MEST via KOSEF, S. Korea.

References and links

1. T. W. Ebbesen, H. J. Lezec, H. G. Ghaemi, T. Thio, and R. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]  

2. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]  

3. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004). [CrossRef]   [PubMed]  

4. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef]   [PubMed]  

5. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef]   [PubMed]  

6. D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008). [CrossRef]  

7. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007). [CrossRef]   [PubMed]  

8. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Coummun. 278, 104–109 (2007). [CrossRef]  

9. M. J. Steel, M. Levy, and R. M. Osgood, “Large magnetooptical Kerr rotation with high reflectivity from photonic bandgap structures with defects,” J. Lightwave Technol. 18, 1289–1296 (2000). [CrossRef]  

10. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001). [CrossRef]  

11. B. Sepulveda, L. M. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945–955 (2006). [CrossRef]  

12. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006). [CrossRef]  

13. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef]   [PubMed]  

14. X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007). [CrossRef]   [PubMed]  

15. E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006). [CrossRef]  

16. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005). [CrossRef]  

17. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol and Philadelphia, 1997). [CrossRef]  

18. R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006). [CrossRef]  

19. Y. H. Lu, M. H. Cho, J. B. Kim, G. J. Lee, Y. P. Lee, and J. Y. Rhee, “Magneto-optical enhancement through gyrotropic gratings,” Opt. Express 16, 5378–5384 (2008). [CrossRef]   [PubMed]  

20. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]   [PubMed]  

21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

22. D. MarcuseTheory of Dielectric Optical Waveguides (Academic Press, Boston, 1991)

23. R. B. Wehrspohn, H.-S. Kitzerow, K. Busch, and A. D. Boardman (Wiley-VCH, Weinheim, 2008).

24. A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express 15, 6612–6622 (2007). [CrossRef]   [PubMed]  

25. Y. H. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008). [CrossRef]  

26. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000). [CrossRef]  

27. F. J. García-Vidal and L. Martín-Morenoand “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66,155412 (2002). [CrossRef]  

28. D. Maystre and A. D. Boardman (Wiley, Belfast, 1982).

29. P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101, 116801(2008). [CrossRef]   [PubMed]  

30. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005). [CrossRef]   [PubMed]  

References

  • View by:

  1. T. W. Ebbesen, H. J. Lezec, H. G. Ghaemi, T. Thio, and R. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  2. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [Crossref]
  3. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
    [Crossref] [PubMed]
  4. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
    [Crossref] [PubMed]
  5. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [Crossref] [PubMed]
  6. D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
    [Crossref]
  7. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
    [Crossref] [PubMed]
  8. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Coummun. 278, 104–109 (2007).
    [Crossref]
  9. M. J. Steel, M. Levy, and R. M. Osgood, “Large magnetooptical Kerr rotation with high reflectivity from photonic bandgap structures with defects,” J. Lightwave Technol. 18, 1289–1296 (2000).
    [Crossref]
  10. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
    [Crossref]
  11. B. Sepulveda, L. M. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945–955 (2006).
    [Crossref]
  12. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
    [Crossref]
  13. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
    [Crossref] [PubMed]
  14. X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
    [Crossref] [PubMed]
  15. E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
    [Crossref]
  16. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005).
    [Crossref]
  17. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol and Philadelphia, 1997).
    [Crossref]
  18. R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
    [Crossref]
  19. Y. H. Lu, M. H. Cho, J. B. Kim, G. J. Lee, Y. P. Lee, and J. Y. Rhee, “Magneto-optical enhancement through gyrotropic gratings,” Opt. Express 16, 5378–5384 (2008).
    [Crossref] [PubMed]
  20. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  22. D. MarcuseTheory of Dielectric Optical Waveguides (Academic Press, Boston, 1991)
  23. R. B. Wehrspohn, H.-S. Kitzerow, K. Busch, and A. D. Boardman (Wiley-VCH, Weinheim, 2008).
  24. A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express 15, 6612–6622 (2007).
    [Crossref] [PubMed]
  25. Y. H. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
    [Crossref]
  26. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
    [Crossref]
  27. F. J. García-Vidal and L. Martín-Morenoand “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B  66,155412 (2002).
    [Crossref]
  28. D. Maystre and A. D. Boardman (Wiley, Belfast, 1982).
  29. P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
    [Crossref] [PubMed]
  30. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005).
    [Crossref] [PubMed]

2008 (5)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
[Crossref]

Y. H. Lu, M. H. Cho, J. B. Kim, G. J. Lee, Y. P. Lee, and J. Y. Rhee, “Magneto-optical enhancement through gyrotropic gratings,” Opt. Express 16, 5378–5384 (2008).
[Crossref] [PubMed]

Y. H. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[Crossref]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

2007 (4)

A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express 15, 6612–6622 (2007).
[Crossref] [PubMed]

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Coummun. 278, 104–109 (2007).
[Crossref]

2006 (5)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
[Crossref]

B. Sepulveda, L. M. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945–955 (2006).
[Crossref]

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
[Crossref]

2005 (2)

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005).
[Crossref]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005).
[Crossref] [PubMed]

2004 (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2002 (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

F. J. García-Vidal and L. Martín-Morenoand “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B  66,155412 (2002).
[Crossref]

2001 (1)

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[Crossref]

2000 (2)

M. J. Steel, M. Levy, and R. M. Osgood, “Large magnetooptical Kerr rotation with high reflectivity from photonic bandgap structures with defects,” J. Lightwave Technol. 18, 1289–1296 (2000).
[Crossref]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[Crossref]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. G. Ghaemi, T. Thio, and R. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Aktsipetrov, O.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

Antos, R.

R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
[Crossref]

Armelles, G.

Astilean, S.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[Crossref]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Baryshev, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

Baryshev, A. V.

Belotelov, V. I.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Coummun. 278, 104–109 (2007).
[Crossref]

Bertrand, P.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[Crossref]

Bezus, E. A.

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Coummun. 278, 104–109 (2007).
[Crossref]

Boardman, A. D.

R. B. Wehrspohn, H.-S. Kitzerow, K. Busch, and A. D. Boardman (Wiley-VCH, Weinheim, 2008).

D. Maystre and A. D. Boardman (Wiley, Belfast, 1982).

Busch, K.

R. B. Wehrspohn, H.-S. Kitzerow, K. Busch, and A. D. Boardman (Wiley-VCH, Weinheim, 2008).

Bykov, D. A.

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Coummun. 278, 104–109 (2007).
[Crossref]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

Cho, M. H.

Y. H. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[Crossref]

Y. H. Lu, M. H. Cho, J. B. Kim, G. J. Lee, Y. P. Lee, and J. Y. Rhee, “Magneto-optical enhancement through gyrotropic gratings,” Opt. Express 16, 5378–5384 (2008).
[Crossref] [PubMed]

Crouse, D.

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Doskolovich, L. L.

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Coummun. 278, 104–109 (2007).
[Crossref]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. G. Ghaemi, T. Thio, and R. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Fang, X.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Fedyanin, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

Fedyanin, A. A.

Fujikawa, R.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

García-Vidal, F. J.

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
[Crossref]

F. J. García-Vidal and L. Martín-Morenoand “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B  66,155412 (2002).
[Crossref]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

Ghaemi, H. G.

T. W. Ebbesen, H. J. Lezec, H. G. Ghaemi, T. Thio, and R. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Granovsky, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

Granovsky, A. B.

Han, X.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Hermann, C.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[Crossref]

Hibbins, A. P.

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
[Crossref]

Horie, M.

R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
[Crossref]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[Crossref]

Inoue, M.

A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express 15, 6612–6622 (2007).
[Crossref] [PubMed]

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

Johnson, E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

Kamran, M.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Khanikaev, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

Khanikaev, A. B.

Kihm, J. E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

Kim, D. S.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005).
[Crossref] [PubMed]

Kim, J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005).
[Crossref] [PubMed]

Kim, J. B.

Kitzerow, H.-S.

R. B. Wehrspohn, H.-S. Kitzerow, K. Busch, and A. D. Boardman (Wiley-VCH, Weinheim, 2008).

Kosobukin, V. A.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[Crossref]

Kotov, V. A.

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Coummun. 278, 104–109 (2007).
[Crossref]

A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol and Philadelphia, 1997).
[Crossref]

Kunets, V.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[Crossref]

Lampel, G.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[Crossref]

Lechuga, L. M.

Lee, G. J.

Lee, Y. P.

Y. H. Lu, M. H. Cho, J. B. Kim, G. J. Lee, Y. P. Lee, and J. Y. Rhee, “Magneto-optical enhancement through gyrotropic gratings,” Opt. Express 16, 5378–5384 (2008).
[Crossref] [PubMed]

Y. H. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[Crossref]

Levy, M.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. G. Ghaemi, T. Thio, and R. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Li, Z.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Lienau, C.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005).
[Crossref] [PubMed]

Lim, P. B.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

Liu, R.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Lockyear, M. J.

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
[Crossref]

Lomakin, V.

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005).
[Crossref]

Long, Y.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Lu, Y. H.

Y. H. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[Crossref]

Y. H. Lu, M. H. Cho, J. B. Kim, G. J. Lee, Y. P. Lee, and J. Y. Rhee, “Magneto-optical enhancement through gyrotropic gratings,” Opt. Express 16, 5378–5384 (2008).
[Crossref] [PubMed]

Ma, J.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Marcuse, D.

D. MarcuseTheory of Dielectric Optical Waveguides (Academic Press, Boston, 1991)

Martín-Moreno, L.

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
[Crossref]

F. J. García-Vidal and L. Martín-Morenoand “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B  66,155412 (2002).
[Crossref]

Maystre, D.

D. Maystre and A. D. Boardman (Wiley, Belfast, 1982).

Mazur, Y. I.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

Michielssen, E.

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005).
[Crossref]

Mistrik, J.

R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
[Crossref]

Möller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[Crossref]

Moreno, E.

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
[Crossref]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Murzina, T.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

Osgood, R. M.

Otani, Y.

R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
[Crossref]

Palamaru, M.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[Crossref]

Park, D. J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005).
[Crossref] [PubMed]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

Peretti, J.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[Crossref]

Pomraenke, R.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

Postora, J.

R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
[Crossref]

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

Qiu, X.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Rhee, J. Y.

Y. H. Lu, M. H. Cho, J. B. Kim, G. J. Lee, Y. P. Lee, and J. Y. Rhee, “Magneto-optical enhancement through gyrotropic gratings,” Opt. Express 16, 5378–5384 (2008).
[Crossref] [PubMed]

Y. H. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[Crossref]

Ropers, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005).
[Crossref] [PubMed]

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

Runge, E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

Safarov, V.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[Crossref]

Salamo, G.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

Schwieger, S.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

Sepulveda, B.

Srinivasan, P.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

Steel, M. J.

Steinmeyer, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005).
[Crossref] [PubMed]

Stibenz, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. G. Ghaemi, T. Thio, and R. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Uchida, H.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

Vasa, P.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

Visnovsky, S.

R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
[Crossref]

Wehrspohn, R. B.

R. B. Wehrspohn, H.-S. Kitzerow, K. Busch, and A. D. Boardman (Wiley-VCH, Weinheim, 2008).

Wei, H.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Wolff, R. A.

T. W. Ebbesen, H. J. Lezec, H. G. Ghaemi, T. Thio, and R. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Yamaguchi, S.

R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
[Crossref]

Yamaguchi, T.

R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
[Crossref]

Zhao, B.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Zhao, H.

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

Zvezdin, A. K.

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Coummun. 278, 104–109 (2007).
[Crossref]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol and Philadelphia, 1997).
[Crossref]

Appl. Phys. Lett. (2)

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
[Crossref]

Y. H. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[Crossref]

J. Appl. Phys. (1)

R. Antos, J. Postora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, “Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials,” J. Appl. Phys. 100, 054906 (2006).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. A: Pure Appl. Opt. (2)

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
[Crossref]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D: Appl. Phys. 39, R151–R161 (2006).
[Crossref]

Nature (3)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. G. Ghaemi, T. Thio, and R. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Opt. Coummun. (1)

V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Magnetooptical effects in the metal-dielectric gratings,” Opt. Coummun. 278, 104–109 (2007).
[Crossref]

Opt. Express (2)

Phys. Rev. B (3)

F. J. García-Vidal and L. Martín-Morenoand “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B  66,155412 (2002).
[Crossref]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of sub-wavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005).
[Crossref]

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[Crossref]

Phys. Rev. Lett. (8)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

X. Fang, Z. Li, Y. Long, H. Wei, R. Liu, J. Ma, M. Kamran, H. Zhao, X. Han, B. Zhao, and X. Qiu, “Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling,” Phys. Rev. Lett. 99, 066805 (2007).
[Crossref] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.  101, 116801(2008).
[Crossref] [PubMed]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901(2005).
[Crossref] [PubMed]

Other (5)

D. Maystre and A. D. Boardman (Wiley, Belfast, 1982).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

D. MarcuseTheory of Dielectric Optical Waveguides (Academic Press, Boston, 1991)

R. B. Wehrspohn, H.-S. Kitzerow, K. Busch, and A. D. Boardman (Wiley-VCH, Weinheim, 2008).

A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol and Philadelphia, 1997).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (Color online) Schematic representation of the one-dimensional metallic-magnetic grating under polar magnetization.
Fig. 2.
Fig. 2. (Color online) Transmittance (black lines) and MO Faraday (red lines) spectra at normal incidence with TM polarization. Solid lines : a bilayer system consisting of the gold slits array (d=750 nm, w=675 nm, h 1=75 nm) and the Bi:YIG layer (h 2=547 nm); Dash lines: a combination of the gold film without slits and the Bi:YIG layer; Dot line: single Bi:YIG layer; Dash dot line: the gold slits array. Arrow indicates the wavelength of λSP.
Fig. 3.
Fig. 3. (Color online) (a):Transmittance (black lines) and MO Faraday (red lines) spectra with the different period d=650 (dot lines), 700 (dash lines), 750 (solid lines), and 800 nm (dash dot lines); (b):Wavelength of resonant peaks of both transmittance and Faraday effect as a function of array period d.
Fig. 4.
Fig. 4. (Color online) (a): Transmittance (black points) and MO Faraday (red points) vs. the bar width from w=550 to 675 nm at an interval of 25 nm;(b): Figure of merit vs. the bar width from w=550 to 675 nm at an interval of 25 nm; (c): Transmittance (black lines) and MO Faraday (red lines) spectra with the different bar width and thickness of the magnetic layer: w=675 and h 2=547 nm (solid lines); w=600 and h 2=515 nm (dash lines).
Fig. 5.
Fig. 5. (Color online) (a):Transmittance spectra as a function of both wavelength and thickness of the magnetic layer h 2 with TM-polarized incidence. Here d=750 nm, w=600 nm, and h 1=75 nm;(b):Top view of (a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T 0 , J + 1 = T J , J + 1 ( 1 Q J ) 1 P J T 0 , J ,
λ SP = d m [ Re ( ε 1 ε d ε 1 + ε d ) ± sin θ i ] ,
β = k 0 sin θ i + 2 π d n ,
i tan ( k z 2 h 2 ) = α 2 ( α 1 + α 3 ) α 2 2 α 1 α 3 ,

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved