Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Substrate effect on aperture resonances in a thin metal film

Open Access Open Access

Abstract

We present a simple theoretical model to study the effect of a substrate on the resonance of an aperture in a thin metal film. The transmitted energy through an aperture is shown to be governed by the coupling of aperture waveguide mode to the incoming and the outgoing electromagnetic waves into the substrate region. Aperture resonance in the energy transmission thus depends critically on the refractive index of a substrate. We explain the substrate effect on aperture resonance in terms of destructive interference among evanescent modes or impedance mismatch. Our model shows an excellent agreement with a rigorous FDTD calculation and is consistent with previous experimental observations.

©2009 Optical Society of America

1. Introduction

Resonance of electromagnetic(EM) waves arise in various forms in subwavelength size metallic apertures. In contrast to the well-known plasmonic resonance in a periodic array of holes or slits [1]–[5], a single aperture can support dipole type resonance since it presents a complementary structure of optical dipole antenna [6]. It was pointed out that a rectangular hole in a highly conducting metal enhances transmission resonantly when the half wavelength λ/2 is equal to the long side a of a rectangle, and the transmitted energy becomes nearly independent of the short side b of a rectangular aperture [7]. These features have been confirmed experimentally using the terahertz EM wave [8]. Experimental results, however, indicate that the resonance condition seems to be modified by λ/2≈nsa in the presence of a substrate with the refractive index ns. This is rather surprising since the aperture, filled with air as illustrated in Fig. 1, possesses the lowest resonant mode of wavelength 2a independently of a substrate. If true, this will make an important application as we can measure the refractive index of a substrate in a spatially highly localized way. Nevertheless, the substrate effect so far has remained a curiosity without a clear physical understanding.

In this paper, we present a theoretical explanation for the substrate effect under the perfectly conducting metal approximation. The perfect conductor assumption is strictly valid only in the terahertz and microwave frequency regimes. In the optical regime, we nevertheless find that our model shows a good qualitative agreement with a rigorous FDTD (Finite Difference Time Domain) result taking into account of the optical metal dispersion. We show that the energy transmission through an aperture in a metal film is governed by the coupling strength of EM waves to the internal mode at the air-aperture (Wa) and the aperture-substrate (Ws) interfaces. We find that if the thickness h of metal film is very thin (hλ), the transmitted energy is inversely proportional to the absolute square of the average coupling strength, i.e., ∝1/|Ws+Wa|2 where Ws is dependent on the refractive index of a substrate. We show that the effect of a substrate in general is to shift the resonance peak to λ/2=nresa where the refractive index nres depends critically on h and lies in between 1 and ns. A simple diffraction theory calculation [9] is provided to account for these predictions which shows an excellent agreement with a rigorous but time consuming FDTD result. We discuss the substrate effect on aperture resonance in terms of destructive interference among evanescent modes or impedance mismatching.

 figure: Fig. 1.

Fig. 1. Rectangular aperture of size a×b in a metal film of thickness h deposited on an substrate.

Download Full Size | PPT Slide | PDF

2. Diffraction theory calculation

Consider a TM polarized light incident vertically onto an aperture of size a×b in a metal film (-h/2<z<h/2) as illustrated in Fig. 1. We denote the incident and reflected EM waves in region I and the transmitted EM waves in region III by

HI=ε0μ0dkxdky[x^δ(kx)δ(ky)eik1z(zh/2)+g(kx,ky)eiΘ+ik1z(zh/2)
HIII=ε0μ0dkxdkyeiΘf(kx,ky)eik3z(z+h2),

where Θ=kx(x-a/2)+ky(y-b/2), kmz=±εmk02kx2ky2 m = 1, 3 and εm is a dielectric constant. Here, a harmonic time factor e -iωt is suppressed and the sign of kmz is chosen such that the imaginary part of kmz is positive. The electric field vector E⃗ is determined through the Maxwell’s equation

×H=Dt=ε0E=ik0μ0ε0E.

Inside the aperture, we make a single mode approximation by assuming that only the TE 10 mode becomes dominantly coupled to the incident wave. The validity of this assumption will be justified later. Explicitly, the TE 10 mode inside a rectangular aperture is described by

ExII=0,EyII=sin(πxa)[Aeiβz+Biβz],EzII=0,HxII=βk0ε0μ0sin(πxa)[AeiβzBeiβz],HyII=0,HzII=k0aε0μ0cos(πxa)[Aeiβz+Beiβz],

where β 2=k 2 0-(π/a)2. The divergence free condition of H⃗ (∇·H⃗=0 =k⃗·g⃗) and the vanishing of Ex at z=h/2 gives rise to

gz=1k1z(kxgx+kygy)=kxk1zky2+k1z2gx,gy=kxkyky2+k1z2gx.

Similar relations hold for f⃗ with k1z replaced by -k 3z. All undetermined coefficients are fixed through the boundary condition such as the continuity of Ey and Hx at the interfaces zh/2. To solve explicitly for momentum variables f⃗,g⃗,A and B, we take appropriate inverse Fourier transforms of boundary matching equations and find after a straightforward calculation that

A=4πDeiβh2(βk0+W3),B=4πDeiβh2(βk0W3),fx=ky2+(k3z)2k0k3zabJπ3βk0D
gx=δ(kx)δ(ky)ky2+(k1z)2k0k3zabJπ3D[βk0cos(βh)iW3sin(βh)]

where the denominator D and the coupling coefficients J and Wm,m=1,3 are defined by

D=isin(βh)(β2k02+W1W3)+βk0(W1+W3)cos(βh);Wm=dkxdkyεmk02kx2k0kmzab8π2J2.
J=2ab0adx0bdysin(πxa)eiΘ=sinc(bky2)[sinc(π2+akx2)+sinc(π2akx2)]

Thus, the electromagnetic field components of TE 10 mode inside the aperture are

Ey=8πDsin(πxa)[βk0cos[β(z+h2)]iW3sin[β(z+h2)]],
Hx=8πDε0μ0sin(πxa)[iβ2k02sin[β(z+h2)]+βk0W3cos[β(z+h2)]].

The resulting energy flux is described by the time averaged Poynting vector component Sz,

Sz=12Re(ExHy*EyHx*)=12Re(EyHx*)=32β2π2k02ε0μ0sin2(πxa)Re(W3)D2,
Sznorm=32β2π2k02Re(W3)D2,

where Snormz is Sz normalized by the incident energy flux of plane wave impinging on the aperture region.

 figure: Fig. 2.

Fig. 2. Plot of coupling strengths Wa and Ws with aperture size a=0.5, b=0.05. We choose 2a as the unit length and the refractive index ns=1.7. It is interesting to note that the zero of imaginary part of Wave indeed occurs around the maximum of Snormz in Fig. 3.

Download Full Size | PPT Slide | PDF

3. Substrate effect

A closed expression of field amplitudes and energy flux as given in Eqs. (7) and (8) allows us to analyze the substrate effect on aperture resonance. Firstly, we consider a thin metal film satisfying the condition βh≪1. In this case, the denominator factor D in Eq. (6) becomes approximately D≈(β/k 0)(W 1+W 3) so that the normalized energy flow Snormz simplifies to

Sznorm=32π2Re(W3)W1+W32.

Thus, the transmission is completely determined by the coupling strengths W 1(=Wa) and W 3(=Ws) that depends on the aperture shape parameters a,b and the dielectric constants ε 1=εa=1,ε 3=εs. To illustrate the nature of W, we take for example a=0.5, b=0.05, εs=1.72 and evaluate W explicitly as described in Fig. 2. Since the present system possesses scale symmetry, we choose 2a as the unit length without loss of generality. While the positive real part of Ws varies little as wavelength increases, the imaginary part of Ws passes zero at a critical wavelength that is implicitly determined by the refractive index of a substrate. This is a general feature of W and Eq. (9) indicates that the maximum of Snormz occurs around the zero of imaginary part of averaged Wave=(Wa+Ws)/2. We also note that the imaginary part of Wm results from the contribution of evanescent modes over the kx- and the ky- integration. The integrand changes sign as kx becomes larger than √εmk 0. Thus, we may conclude that the aperture resonance, or alternatively the maximum of Snormz, arises when the evanescent modes contributing to the coupling minimize their effect through the destructive interference.

 figure: Fig. 3.

Fig. 3. (a) Aperture resonance in the normalized energy flow calculated by a diffraction theory with a=0.5, b=0.05, ns=1.7. (b), (c) and (d) are the FDTD results for the gold film case with aperture sizes, 200µm×20µm,400nm×40nm,200nm×40nm respectively.

Download Full Size | PPT Slide | PDF

For a relatively thick metal film, we note that in the denominator D the coupling coefficients W is combined with the waveguide momentum β whose magnitude has a minimum at k 0=π/a or λ=2a. As the thickness of a metal film increases, this effectively shifts the aperture resonance from the minimum condition of coupling W toward the minimum condition of the waveguide momentum. All these features are explicitly demonstrated in Fig. 3. Figure 3(a) describes the normalized time-averaged Poynting vector component Sz calculated by the formula in Eq. (8) whereas Figs. 3(b)–3(d) are rigorous results for the gold film with various aperture sizes calculated by the FDTD method adopting nonuniform grids and the Drude type metal dispersion fitted to the experimental values for gold. Aperture sizes for Figs. 3(b), 3(c) and 3(d) are chosen to make resonance peaks to be located in the terahertz, IR and optical frequency domains. It is remarkable that the single mode approximation in Eq. (8) agrees nicely with the FDTD result in Fig. 3(b) even for small h. As explained before, in the presence of a substrate these results show that the resonance peak moves from the value 1.55 minimizing W toward the free-standing resonance value near 1 minimizing β as the thickness h increases. The earlier experimental observation [8] that substrate shifts the resonance peaks to λ=ns×2a=1.7 turns out to be inaccurate though the general trend is correct. Figures 3(c) and 3(d) describe FDTD results covering the IR and the optical ranges. Except for the overall strong red shift of resonance peaks [10], they show a remarkable qualitative agreement with our theoretical prediction in Fig. 3(a). thereby strengthening the validity of our simple approach. Figure 3 shows that the resonance peak decreases as the metal film becomes thicker. This agrees with the fact that the thicker slit has weaker capacitative field enhancement [11, 12].

In order to help understanding the substrate effect, we have computed the electric and mag- netic field profiles of the resonant mode TE 10 using the FDTD method with results in Fig. 4. Since the FDTD method solves the Maxwell’s equation directly, it includes contributions not only from the TE 10 mode but also from all higher order modes. Nevertheless, we note from Fig. 4 that TE 10 is dominant even for a thin metal film with thickness h=0.05. We find that components Ex, Hy are extremely weak compared to Ey, Hx (note the difference in color scales showing the relative strength). The dominance of TE 10 mode, together with the result in Fig.3 showing the remarkable agreement between two different methods, justifies the use of single mode approximation in our analysis [9].

The horizontal cut clearly shows that electric field component Ey reduces significantly in the presence of a substrate whereas magnetic field component behaves exactly in the opposite way. This is due to the impedance mismatch at the substrate surface, where the reflected wave reduces (increases) the total electric (magnetic) field by reversing (keeping) direction upon reflection. On the other hand, the Poynting vector component Sz as a product of these two components does not change significantly unless the refractive index of a substrate is too big. Figure 4 also shows that field components are moved toward the substrate region. This is an outcome of the impedance mismatch and the continuity of electromagnetic fields at the substrate surface. Thus the increased occupation of EM field in the substrate region makes the aperture resonance to depend on the refractive index of a substrate.

 figure: Fig. 4.

Fig. 4. FDTD calculation of the resonant mode electric and magnetic field maps in the plane y=b/2 parallel to the xz-plane. Each field components are measured through the time averaged magnitude without (air) and with (sub) a substrate. Cross cuts of field profiles are along the horizontal center line and the metal thickness h=0.05 and a=0.5, b=0.05.

Download Full Size | PPT Slide | PDF

In summary, we have shown that the presence of a substrate affects the resonance condition of an aperture in a metal film. In a thin metal film, the condition of aperture resonance is determined by the minimization of coupling between the waveguide mode and external evanescent modes that depends on the substrate. We obtained an explicit theoretical formulation of the resonance condition and offered a heuristic physical account for the substrate effect on resonance in terms of destructive interference and impedance mismatch. Due to the complexity of coupling function W and the multiple reflections involved in resonance, this physical account is only a qualitative one. A simpler, yet quantitative physical account of the substrate effect thus remains an open problem. More importantly, the dependence of resonance on a substrate can be utilized to measure the refractive index of a thin film in a spatially highly confined way. This could lead to a practical application of terahertz waves to the measurement of much smaller nano scale systems.

Acknowledgements

We thank F. J. Garcia-Vidal for discussion. This work is supported in part by KOSEF, KRF, MKE and the Seoul R & BD program.

References and links

1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]  

2. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]  

3. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002). [CrossRef]  

4. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef]   [PubMed]  

5. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritions and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005). [CrossRef]   [PubMed]  

6. Q. H. Park, “Optical antennas and plasmonics,” Contemporary Phys. 50, 407–423 (2009). [CrossRef]  

7. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95, 193901 (2005). [CrossRef]  

8. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16, 20484–20489 (2008). [CrossRef]   [PubMed]  

9. Q. H. Park, J. H. Kang, J. W. Lee, and D. S. Kim, “Effective medium description of plasmonic metamaterials,” Opt. Express 15, 6994–6999 (2007). [CrossRef]   [PubMed]  

10. K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435123–126 (2007). [CrossRef]  

11. M. A. Seo et al., “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nature Photonics 3, 152–156 (2009). [CrossRef]  

12. J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009). [CrossRef]   [PubMed]  

References

  • View by:

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  2. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [Crossref]
  3. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
    [Crossref]
  4. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
    [Crossref] [PubMed]
  5. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritions and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
    [Crossref] [PubMed]
  6. Q. H. Park, “Optical antennas and plasmonics,” Contemporary Phys. 50, 407–423 (2009).
    [Crossref]
  7. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95, 193901 (2005).
    [Crossref]
  8. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16, 20484–20489 (2008).
    [Crossref] [PubMed]
  9. Q. H. Park, J. H. Kang, J. W. Lee, and D. S. Kim, “Effective medium description of plasmonic metamaterials,” Opt. Express 15, 6994–6999 (2007).
    [Crossref] [PubMed]
  10. K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435123–126 (2007).
    [Crossref]
  11. M. A. Seo et al., “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nature Photonics 3, 152–156 (2009).
    [Crossref]
  12. J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009).
    [Crossref] [PubMed]

2009 (3)

Q. H. Park, “Optical antennas and plasmonics,” Contemporary Phys. 50, 407–423 (2009).
[Crossref]

M. A. Seo et al., “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nature Photonics 3, 152–156 (2009).
[Crossref]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

Q. H. Park, J. H. Kang, J. W. Lee, and D. S. Kim, “Effective medium description of plasmonic metamaterials,” Opt. Express 15, 6994–6999 (2007).
[Crossref] [PubMed]

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435123–126 (2007).
[Crossref]

2005 (2)

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95, 193901 (2005).
[Crossref]

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritions and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[Crossref] [PubMed]

2002 (2)

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
[Crossref]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Adam, A. J. L.

Ahn, K. J.

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95, 193901 (2005).
[Crossref]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Gray, S. K.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435123–126 (2007).
[Crossref]

Kang, J. H.

Kim, D. S.

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

Lee, J. W.

Lee, K. G.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritions and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[Crossref] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95, 193901 (2005).
[Crossref]

Moreno, E.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95, 193901 (2005).
[Crossref]

Park, Q. H.

Q. H. Park, “Optical antennas and plasmonics,” Contemporary Phys. 50, 407–423 (2009).
[Crossref]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009).
[Crossref] [PubMed]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16, 20484–20489 (2008).
[Crossref] [PubMed]

Q. H. Park, J. H. Kang, J. W. Lee, and D. S. Kim, “Effective medium description of plasmonic metamaterials,” Opt. Express 15, 6994–6999 (2007).
[Crossref] [PubMed]

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritions and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[Crossref] [PubMed]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

Planken, P. C. M.

Porto, J. A.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95, 193901 (2005).
[Crossref]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

Ratner, M. A.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435123–126 (2007).
[Crossref]

Schatz, G. C.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435123–126 (2007).
[Crossref]

Seo, M. A.

Shuford, K. L.

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435123–126 (2007).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Treacy, M. M. J.

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Chem. Phys. Lett. (1)

K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate effects on surface plasmons in single nanoholes,” Chem. Phys. Lett. 435123–126 (2007).
[Crossref]

Contemporary Phys. (1)

Q. H. Park, “Optical antennas and plasmonics,” Contemporary Phys. 50, 407–423 (2009).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Nature Photonics (1)

M. A. Seo et al., “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nature Photonics 3, 152–156 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002).
[Crossref]

Phys. Rev. Lett. (5)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref] [PubMed]

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritions and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[Crossref] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[Crossref]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95, 193901 (2005).
[Crossref]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Rectangular aperture of size a×b in a metal film of thickness h deposited on an substrate.
Fig. 2.
Fig. 2. Plot of coupling strengths Wa and Ws with aperture size a=0.5, b=0.05. We choose 2a as the unit length and the refractive index ns =1.7. It is interesting to note that the zero of imaginary part of Wave indeed occurs around the maximum of Snorm z in Fig. 3.
Fig. 3.
Fig. 3. (a) Aperture resonance in the normalized energy flow calculated by a diffraction theory with a=0.5, b=0.05, ns =1.7. (b), (c) and (d) are the FDTD results for the gold film case with aperture sizes, 200µm×20µm,400nm×40nm,200nm×40nm respectively.
Fig. 4.
Fig. 4. FDTD calculation of the resonant mode electric and magnetic field maps in the plane y=b/2 parallel to the xz-plane. Each field components are measured through the time averaged magnitude without (air) and with (sub) a substrate. Cross cuts of field profiles are along the horizontal center line and the metal thickness h=0.05 and a=0.5, b=0.05.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

HI = ε0μ0 dkxdky[x^δ(kx)δ(ky)eik1z(zh/2)+g(kx,ky)eiΘ+ik1z(zh/2)
HIII = ε0μ0 dkxdkyeiΘf(kx,ky)eik3z(z+h2),
×H=Dt=ε0E=ik0μ0ε0E.
ExII=0,EyII=sin(πxa)[Aeiβz+Biβz],EzII=0,HxII=βk0ε0μ0sin(πxa)[AeiβzBeiβz],HyII=0,HzII=k0aε0μ0cos(πxa)[Aeiβz+Beiβz],
gz = 1k1z (kxgx+kygy)=kxk1zky2+k1z2gx,gy=kxkyky2+k1z2gx.
A = 4πD eiβh2 (βk0+W3),B=4πDeiβh2(βk0W3),fx=ky2+(k3z)2k0k3zabJπ3βk0D
gx = δ (kx)δ(ky) ky2+(k1z)2k0k3z abJπ3D [βk0cos(βh)iW3sin(βh)]
D = i sin (βh)(β2k02+W1W3)+βk0(W1+W3)cos(βh);Wm=dkxdkyεmk02kx2k0kmzab8π2J2.
J = 2ab 0adx 0bdy sin (πxa) eiΘ = sinc(bky2)[sinc(π2+akx2)+sinc(π2akx2)]
Ey = 8πD sin (πxa) [βk0cos[β(z+h2)]iW3sin[β(z+h2)]] ,
Hx = 8πD ε0μ0 sin (πxa) [iβ2k02sin[β(z+h2)]+βk0W3cos[β(z+h2)]] .
Sz = 12 Re (ExHy*EyHx*)=12Re(EyHx*)=32β2π2k02ε0μ0sin2(πxa)Re(W3)D2,
Sznorm = 32β2π2k02 Re(W3)D2 ,
Sznorm = 32π2 Re(W3)W1+W32 .

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved