Abstract

We report an entanglement-based quantum key distribution experiment that we performed over 100 km of optical fiber using a practical source and detectors. We used a silicon-based photon-pair source that generated high-purity time-bin entangled photons, and high-speed single photon detectors based on InGaAs/InP avalanche photodiodes with the sinusoidal gating technique. To calculate the secure key rate, we employed a security proof that validated the use of practical detectors. As a result, we confirmed the successful generation of sifted keys over 100 km of optical fiber with a key rate of 4.8 bit/s and an error rate of 9.1%, with which we can distill secure keys with a key rate of 0.15 bit/s.

©2010 Optical Society of America

1. Introduction

In 1991, Ekert proposed the distribution of absolutely secure keys by using quantum entanglement [1]. This idea was followed by a modified protocol devised by Bennett, Brassard and Mermin, which is now referred to as the BBM92 quantum key distribution (QKD) protocol [2]. These concepts of entanglement-based QKD fascinated many physicists and communication researchers, and resulted in several experimental demonstrations. Entanglement-based QKD has certain possible advantages over QKD systems with attenuated laser sources. For example, Waks et al. showed that we can approximately double the key distribution distance, based on a security analysis that took account of individual attacks [3]. Moreover, the unconditional security of entanglement-based QKD with practical sources and detectors has recently been proved [4–7]. Another merit of entanglement-based QKD protocols is that we can eliminate the need for a random number generator, which is one of the components that are currently difficult to implement in point-to-point QKD systems with a GHz clock rate [8–11]. Here, we would like to note that high-speed physical random number generators are currently being intensively studied to solve this problem [12–14].

Several entanglement-based QKD experiments have already been reported [15–22]. Our group, in collaboration with NIST, Stanford University and NICT, reported BBM92 QKD experiments performed over 100 km of optical fiber using superconducting single photon detectors (SSPD) [22]. Thanks to the extremely small dark count rate of the SSPDs, we successfully distributed keys that were secure against general individual attacks [3] over 100 km (50 km × 2) of fiber. However, there were several drawbacks with this experiment. One such drawback was the relatively small key generation rate: even at 0 fiber length, we observed a secure key rate of 20 bit/s. This low rate is mainly because of the low detection efficiencies of the SSPDs used in the experiment (approximately 1%). Since the key generation rate is proportional to the square of the detection efficiency in entanglement-based QKD systems, it is important to use detectors with high detection efficiencies to increase the key rates. In addition, the SSPDs had to be cooled to below 4 K, which made them hard to use in practical communication systems. Another problem was the complexity of the source. We employed two periodically-poled lithium niobate (PPLN) waveguides, one of which was used for generating 780-nm pulses from 1550-nm pump pulses through second harmonic generation (SHG). The other used for generating time-bin entangled pairs via spontaneous parametric downconversion (SPDC). This setup enabled us to use high-speed modulators in the 1.5-µm band to prepare 780-nm pulses with a high clock frequency, but the need for two nonlinear media made the system complex and bulky. Moreover, the temperatures of the two PPLN waveguides had to be controlled precisely to achieve a phase matching condition.

In this paper, we present an entanglement-based QKD experiment using practical devices. We implemented the BBM92 protocol using an entangled photon-pair source based on spontaneous four-wave mixing (SFWM) in a silicon photonic wire waveguide, by which we obtained high-purity time-bin entangled photon pairs in the 1.5-µm band with a very simple setup and without the need for temperature control [23,24]. We also used four channels of single photon detectors based on InGaAs/InP avalanche photodiodes (APD). These detectors were all operated with a sinusoidal gating scheme with a gate frequency of as high as 500 MHz [25], which contributed to a significant increase in the sifted key rate compared with previous entanglement-based QKD experiments [18,19,21,22]. To estimate the secure key rate, we employed a security proof based on squash operators [4, 5, 7], which can be applied to QKD systems with practical threshold detectors. As a result, we confirmed the successful generation of secure keys between Alice and Bob separated by 100 km of fiber with a key rate of 0.15 bit/s.

 figure: Fig. 1.

Fig. 1. Experimental setup.

Download Full Size | PPT Slide | PDF

2. Setup

Figure 1 shows the experimental setup. 1.5-µm band double pulses were produced at a clock frequency of 100 MHz by modulating a continuous laser light with an intensity modulator. The pulse width and interval were 100 ps and 2 ns, respectively. The pulses were launched into a silicon wire waveguide [26] module after the polarization state was adjusted so that it was horizontal. In the module, single mode fibers were connected to the input and output of the waveguide using UV adhesive. This means the module can be used as a stable entanglement source that does not require any active components except for the pump laser. The loss induced in the fiber coupling was estimated to be 1.4 dB per point, including the loss caused by the spot size converters fabricated at both edges of the waveguide [27]. The waveguide used in the experiment was 0.9 cm long, 460 nm wide, and 220 nm thick. The SFWM inside the waveguide [23, 24] generated time-bin entangled photon pairs, whose approximate state is shown by the following equation [28].

Ψ=12(1s1i+2s2i)

Here, ∣kx denotes a state where there is a photon in mode x(= s: signal, i: idler) and time slot k. We set the peak pump power at 0.028 W, thereby obtaining entangled pairs whose average photon-pair number per a pair of time bins was approximately 0.03. This implies that the nonlinear coefficient γ of our silicon wire waveguide exceeded 105 [1/W/km], which is five orders of magnitude larger than that of a conventional silica fiber. The very tight confinement of light in the nano-scale waveguide enabled this very large third-order nonlinearity. A detailed experimental characterization of our waveguide is included in [29]. The generated photons were input into a dielectric filter to separate signal and idler photons whose wavelengths were 1546.3 and 1555.9 nm, respectively. The insertion loss and the 3-dB bandwidth of the filter for both channels were 2.0 dB and 115 GHz, respectively. The signal and idler photons were transmitted over spools of 50-km dispersion shifted fiber (DSF) and sent to Alice and Bob, respectively. Alice and Bob input the received photons into 1-bit delayed interferometers fabricated using planar lightwave circuit (PLC) technology [30]. The insertion loss of the interferometers was 2.0 dB. The two output ports of each PLC interferometer were connected to single photon detectors based on sinusoidally-gated InGaAs/InP APDs. The detection efficiency and dark count probability per gate of the four detectors were set at 8% and 10−5, respectively. The details of our sinusoidally-gated detectors are reported in [31]. The detection signals from the detectors were input into a 4-port OR logic gate after appropriate delay lines had been added. Trigger signals synchronized with the pump pulses and the signals from the OR gate were used as start and stop pulses for a time interval analyzer (TIA) (Fast ComTec P7889), by which we were able to record the arrival times of the start and stop signals with a rate as high as 5 GHz and a timing resolution of 100 ps. The period of the trigger signal was 10 µs, and the TIA records stop events for a 6.5536-µs temporal span after each trigger. Thus, the effective measurement time was ~66% of the real measurement time. The experimentally obtained key rates presented in section 4 correspond to the key rate in this effective measurement time window, and so the actual key rates are simply obtained by multiplying the values in section 4 by ~0.66.

We implemented the BBM92 protocol with the scheme presented in [17], in which two non-orthogonal measurement bases are passively selected by using 1-bit delayed interferometers. When a time-bin qubit state passes through a 1-bit delayed interferometer, there is the possibility of observing a photon in three time slots. Photon detection at the first or third slot and that at the second time slot correspond to two non-orthogonal measurement bases. Conventionally, the former is called the “time basis”, while the latter called the “energy basis”. A 1-bit delayed interferometer whose relative phase difference is adjusted to 0 converts a quantum state ∣kx to 12(k,p1xk,p2x+k+1,p1x+k+1,p2x) , where p 1 and p 2 denote the interferometer output ports. Then, Eq. (1) is converted to

Ψ142{1,p1s1,p1i1,p1s1,p2i
1,p2s1,p1i+1,p2s1,p2i
+22,p1s2,p1i+22,p2s2,p2i
+3,p1s3,p11+3,p1s3,p2i
+3,p2s3,p1i+3,p2s3,p2i},

where only terms that contribute to the coincidences in the matched bases are shown. The 5th and 6th terms on the right hand side of Eq. (2) correspond to the coincidences in the energy basis, while the other terms correspond to those in the time basis. This equation clearly shows that we observe correlations in “ports” in the energy basis coincidences and correlations in “time slots” in the time basis coincidences, and thus Alice and Bob can share the correlated measurement results that can be converted into a sifted key.

Since the entanglement source is based on a spontaneous parametric process, the source probabilistically generates multiple pairs in a pulse. These multiple pairs cause “accidental coincidences” between Alice and Bob, which lead to an increase of the error rate. The multiplepairs also cause events in which two detectors owned by Alice or Bob click simultaneously (double click). In our experiment, Alice or Bob assigned a random bit to each double click event.

3. Secure key rate calculation

According to [4, 5], by introducing a squash operator, which is a quantum operation that transforms an incoming n-photon state to a qubit state, we can show that security proofs based on the virtual entanglement distillation protocol (EDP) [32,33] are valid for a system using threshold detectors. In addition, this theoretical approach has been expanded to multimode threshold detectors [5, 7]. Therefore, we calculated the secure key rate based on the EDP assisted by the squash operator. Based on the EDP reported in [33], the secure key rate Rsec is given by

Rsec=Rsif{1(1+f(e))h(e)}
 figure: Fig. 2.

Fig. 2. Coincidence rate (squares) and idler count rate (circles) as a function of idler interferometer temperature.

Download Full Size | PPT Slide | PDF

Here, Rsif, e, and h are the sifted key rate, error rate, and the binary entropy function, respectively. f(e) represents the efficiency of the error correcting code. In the calculation of the experimental secure key rates described below, we used f(e) values as listed in Table I of [3].

4. Results

To evaluate the quality of the entangled photon pairs generated from the silicon-based source, we first undertook a two-photon interference experiment. We employed a 500-MHz pulse train to generate a sequential time-bin entangled state [34]. We fixed the signal interferometer temperature at 21.8 deg. and measured the coincidence count rate as a function of the idler interferometer temperature. The result is shown in Fig. 2. Here, we set the pump peak power at the same value as that used for the QKD experiment described below. We observed a clear two-photon interference fringe with a visibility of 93.3%.

Tables Icon

Table 1. QKD results

We then undertook a BBM92 QKD experiment with fiber lengths of 0, 20, 50 and 100 km. To reduce the statistical error in the error rate estimation, we set the measurement times for each transmission distance to obtain at least 10,000 sifted key bits. The obtained results are summarized in Table I.

 figure: Fig. 3.

Fig. 3. Sifted and secure key rates as a function of fiber length between Alice and Bob. Theoretical key rates are calculated assuming a fiber loss of 0.2 dB/km.

Download Full Size | PPT Slide | PDF

Based on Eq. (3), we calculated the secure key rates using the sifted key rates, error rates and double click fraction that we obtained experimentally. Figure 3 shows the sifted (circles) and secure key rates (squares) as a function of fiber length between Alice and Bob. As we discuss in Appendix B, the experimentally obtained double click fraction was very small as expected from a theoretical model indicating that the effect on the secure key rate was fairly limited. The fitted curves are a theoretical estimation based on the equations given in Appendix A. To calculate the secure key rate, we assumed a system error rate of 3% so that the back-to-back error rate coincided with the experimentally obtained error rate (4.7%). The obtained curves agreed reasonably well with the experimental results. According to our previous study, the noise photons caused by spurious nonlinear effects and pump leakage in the silicon-based source were well below the sensitivity of our detection system [29]. We estimate that regarding the 3% system error rate, approximately 2% comes from the timing jitter of the detectors, and the remaining 1% from the limited extinction ratio of the interferometers. At 100 km, most of the errors were presumably caused by accidental coincidences, which includes coincidences caused by multi-photon emission and dark counts.

We note that we successfully improved the key rate compared with previous entanglement-based QKD experiments over optical fiber. At 0 km, we obtained a secure key rate of 208 bit/s, which is about ten times larger than that obtained in our previous experiment using superconducting single photon detectors [22]. This significant increase is achieved thanks to the relatively large detection efficiencies of the InGaAs/InP based detectors. Moreover, we were able to generate secure keys over 100 km of fiber with a secure key rate of 0.15 bit/s. With the experimental result in [22], we can obtain a secure key rate of 0.12 bit/s. Thus, the present result outperformed the previous experiment using SSPDs up to a transmission distance of 100 km, which clearly reveals that the high-speed InGaAs/InP detectors are useful for entanglement-based QKD systems.

5. Conclusion

We have reported a long-distance entanglement-based QKD experiment. We employed a 1.5-µm band entanglement source based on a silicon wire waveguide module, which generated high-purity time-bin entangled photons with a relatively simple setup. The use of high-speed single photon detectors based on InGaAs/InP APDs resulted in approximately a tenfold increase in the key rate compared with the previous results for telecom-band entanglement-based QKD. Based on the security proofs recently reported in [4, 5, 7], we were able to generate sifted keys from which we could distill secure keys over up to 100 km of fiber. We believe that the technologies established in the present experiment will constitute important tools for realizing entanglement-based quantum communication systems over optical fiber networks.

A. Theoretical sifted key rate and error rate for Poissonian photon-pair source

Here, we derive equations for estimating the sifted key rate and error rate obtained in a QKD system using an entanglement source based on a spontaneous parametric process. In our experiments, the coherence time of the photon pairs was estimated to be ~4 ps, while the pump pulse width was 100 ps. Therefore, a pump pulse can generate photon pairs in many different temporal modes. In this situation, the number distribution of the photon pairs becomes Poissonian [35, 36]. In the following, we assume the use of entangled photon pairs with an average photon-pair number per pulse of μ. Then, the pair number distribution is given by the following equation.

Pμ(x)=μx!eμ

A.1. Sifted key rate

A.1.1. Energy basis

The quantum state of the pair, which is given by Eq. (1) in the time basis, is shown by the following energy-basis expression.

Ψ=12(asai+bsbi)

where ∣a〉 = (∣1〉+∣2〉)/√2 and ∣b〉 = (∣1〉−∣2〉)/√2.

We denote Dk as the detection probability when k photons are incident on a detector, whose collection efficiency (including the coupling efficiency between the nonlinear medium and the fiber, the filter loss, the fiber transmission loss, and the detection efficiency of the detector) and dark count probability are given by α and d, respectively. Here, we exclude the 3-dB loss caused by the passive selection of the measurement bases. Then, when α,d << 1, Dk is expressed as

Dk1(1α2)k+dkα2+d.

We consider a case where x independent pairs (the state of each pair is shown by Eq. (5)) are generated in two pulses. Then, the whole quantum state is given by [36]

Ψx=(12)xk=1x{askaik+bskbik}

Since the state in Eq. (7) is a classical mixture of Fock states from each of Alice and Bob’s viewpoints, we are allowed to work on each Fock state independently. Based on the binominal theorem, when there are y pairs that cause the detection at detector b, the number of combinations is given by xCy=x!y!(xy)! . In this case, the detection probability at either Alice or Bob is given by Dx−y + Dy. Then, taking account of the 50% loss caused by the basis selection, the coincidence probability for x pairs is given by

F(x)=Σy=0x(12)xxCy(Dxy+Dy)2=Σy=0x(12)xxCy(Dxy2+2DxyDy+Dy2).

In the parentheses on the right hand side of the above equation, the term 2Dx−y Dy corresponds to the events where detector a on Alice’s site and b on Bob’s site, or vice versa, registered a click, which induces errors. Therefore, the coincidence probability that contributes to errors is expressed as

Fer(x)=Σy=0x(12)xxCy(2DxyDy)

The overall sifted key rate per qubit for the energy basis Renergy is obtained as

Re=Σx=0Pμ(x)F(x).

The coincidence rate that causes an error is given by

Re,er=Σx=0Pμ(x)Fer(x)

By using Eq. (6), these values are simplified to

Re=α2μ4+(μα2+2d)2
Re,er=12(μα2+2d)2

The above agree with the equations derived in [36]. Note that the above equations represent the probability of simultaneous clicks between two detectors, one from Alice’s site and the other from Bob’s, but do not exclude double clicks, where three or all four detectors click. The same is true for the time basis, which we will describe next.

A.1.2. Time basis

In the time basis measurement, we discriminate the temporal position of the photon output from either port A or B. This setup is equivalent to a time discrimination experiment using a single detector with the same collection efficiency α but with a dark count probability of 2d. Then, the detection probability in the time basis is given by

Dkkα2+2d

Other than the difference of the detection probability, we can use the same procedure as that used for deriving energy basis equations. Consequently, we can obtain the following sifted key rate and the coincidence rate that causes error as follows.

Rt=α2μ4+(μα2+4d)2
Rt,er=12(μα2+4d)2

A.2. Double click rate

Again we consider a case where x pairs are generated in a qubit. With a similar procedure to that used in the sifted key rate calculation, the probability of obtaining threefold coincidences, which gives double clicks either at Alice or Bob, is given by the following equation.

G(x)=Σy=0x(12)xxCy(2Dxy2Dy+2Dy2Dxy)

Using the above equation, we can derive the double click rate (= threefold coincidence rate) per qubit as

T=Σx=0Pμ(x)G(x).

With Eqs. (6) and (14), we can obtain the double click rates for the energy and time bases. The results are simplified to:

Te=α3μ216(2+μ)+34α2dμ2+3αd2μ+12α2dμ+4d3
Tt=α3μ216(2+μ)+32α2dμ2+12αd2μ+α2dμ+32d3

Thus, the overall double click rate is given by

T=Te+Tt.

A.3. Sifted key rate and error rate

As described above, the coincidence rates given by Eqs. (12), (13), (15), and (16) include the cases in which three or four detectors simultaneously click. This means that double click events are double-counted in the derivation of those rates. In the following, we neglect events where all four detector click simultaneously. Then, the sifted key rate R is given by the following equation.

Rsif=Re+RtT

Since we assign a random bit to each double click event, a double click event contributes to an error with a 50% probability. Therefore, the overall rate of the coincidences that cause errors, Rer, is given by

Rer=Re,er+Rt,er12T

The error rate e is obtained as

e=RerRsif

We can obtain the theoretical secure key rate by plugging Eqs. (22) and (24) into Eq. (3).

B. Experimental result of double click rate

In the experiments, we observed very few double clicks: even without transmission fibers, the total number of double clicks was 44 in an effective measurement time of ~295 s, yielding a double click fraction with respect to the sifted key of 2.9×10−4. According to the theory described in Appendix A, 49 double clicks were expected in the measurement time and this is in good agreement with the experimental result. In addition, we observed no double clicks at 50 or 100 km. For example, the expected number of double clicks at 100 km is 0.6, even with a measurement time as long as ~ 40 minutes. These calculated and experimental results clearly show that double clicks have a negligible effect on the error rate for photon-pair sources based on spontaneous parametric processes, if we set the photon number per pulse at a relatively small value as in our experiment.

References and links

1. A. K. Ekert, “Quantum cryptography based on Bellfs theorem,” Phys. Rev. Lett. 67, 661 (1991). [CrossRef]   [PubMed]  

2. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992). [CrossRef]   [PubMed]  

3. E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 (2002). [CrossRef]  

4. T. Tsurumaru and K. Tamaki, “Security proof for quantum-key-distribution systems with threshold detectors,” Phys. Rev. A 78, 032302 (2008). [CrossRef]  

5. N. J. Beaudry, T. Moroder, and N. Lutkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett. 101, 093601 (2008). [CrossRef]   [PubMed]  

6 . M. Koashi, Y. Adachi, T. Yamamoto, and N. Imoto, “Security of entanglement-based quantum key distribution with practical detectors,” arXiv: 0804.0891 (2008).

7. T. Tsurumaru, “Squash operator and symmetry,” Phys. Rev. A 81, 012328 (2010). [CrossRef]  

8. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005). [CrossRef]  

9. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006). [CrossRef]  

10. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007). [CrossRef]  

11. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008). [CrossRef]  

12. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008). [CrossRef]  

13. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008). [CrossRef]  

14. Bing Qi, Yue-Meng Chi, Hoi-Kwong Lo, and Li Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35, 312–314 (2010). [CrossRef]   [PubMed]  

15. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000). [CrossRef]   [PubMed]  

16. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000). [CrossRef]   [PubMed]  

17. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000). [CrossRef]   [PubMed]  

18. G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63, 012309 (2001). [CrossRef]  

19. S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Eur. Phys. J. D 30, 2013148 (2004). [CrossRef]  

20. A. Poppe, A. Fedrizzi, R. Ursin, H. Bohm, T. Lorunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004). [CrossRef]   [PubMed]  

21. T. Honjo, H. Takesue, and K. Inoue, “Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs,” Opt. Lett. 32, 1165 (2007). [CrossRef]   [PubMed]  

22. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008). [CrossRef]  

23. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007). [CrossRef]  

24. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008). [CrossRef]   [PubMed]  

25. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14, 10043–10049 (2006). [CrossRef]   [PubMed]  

26. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005). [CrossRef]  

27. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002). [CrossRef]  

28. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999). [CrossRef]  

29. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010). [CrossRef]  

30. H. Takesue and K. Inoue, “Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804 (2005). [CrossRef]  

31. B. Miquel and H. Takesue, “Observation of 1.5 µm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” N. J. Phys. 11, 045006 (2009). [CrossRef]  

32. H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999). [CrossRef]   [PubMed]  

33. P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000). [CrossRef]   [PubMed]  

34. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004). [CrossRef]  

35. H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

36. H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010). [CrossRef]  

References

  • View by:

  1. A. K. Ekert, “Quantum cryptography based on Bellfs theorem,” Phys. Rev. Lett. 67, 661 (1991).
    [Crossref] [PubMed]
  2. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
    [Crossref] [PubMed]
  3. E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 (2002).
    [Crossref]
  4. T. Tsurumaru and K. Tamaki, “Security proof for quantum-key-distribution systems with threshold detectors,” Phys. Rev. A 78, 032302 (2008).
    [Crossref]
  5. N. J. Beaudry, T. Moroder, and N. Lutkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett. 101, 093601 (2008).
    [Crossref] [PubMed]
  6. M. Koashi, Y. Adachi, T. Yamamoto, and N. Imoto, “Security of entanglement-based quantum key distribution with practical detectors,” arXiv: 0804.0891 (2008).
  7. T. Tsurumaru, “Squash operator and symmetry,” Phys. Rev. A 81, 012328 (2010).
    [Crossref]
  8. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005).
    [Crossref]
  9. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
    [Crossref]
  10. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007).
    [Crossref]
  11. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
    [Crossref]
  12. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
    [Crossref]
  13. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
    [Crossref]
  14. Bing Qi, Yue-Meng Chi, Hoi-Kwong Lo, and Li Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35, 312–314 (2010).
    [Crossref] [PubMed]
  15. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
    [Crossref] [PubMed]
  16. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
    [Crossref] [PubMed]
  17. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
    [Crossref] [PubMed]
  18. G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
    [Crossref]
  19. S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Eur. Phys. J. D 30, 2013148 (2004).
    [Crossref]
  20. A. Poppe, A. Fedrizzi, R. Ursin, H. Bohm, T. Lorunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
    [Crossref] [PubMed]
  21. T. Honjo, H. Takesue, and K. Inoue, “Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs,” Opt. Lett. 32, 1165 (2007).
    [Crossref] [PubMed]
  22. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
    [Crossref]
  23. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
    [Crossref]
  24. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
    [Crossref] [PubMed]
  25. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14, 10043–10049 (2006).
    [Crossref] [PubMed]
  26. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
    [Crossref]
  27. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
    [Crossref]
  28. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
    [Crossref]
  29. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
    [Crossref]
  30. H. Takesue and K. Inoue, “Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804 (2005).
    [Crossref]
  31. B. Miquel and H. Takesue, “Observation of 1.5 µm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” N. J. Phys. 11, 045006 (2009).
    [Crossref]
  32. H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
    [Crossref] [PubMed]
  33. P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
    [Crossref] [PubMed]
  34. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004).
    [Crossref]
  35. H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).
  36. H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
    [Crossref]

2010 (4)

T. Tsurumaru, “Squash operator and symmetry,” Phys. Rev. A 81, 012328 (2010).
[Crossref]

Bing Qi, Yue-Meng Chi, Hoi-Kwong Lo, and Li Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35, 312–314 (2010).
[Crossref] [PubMed]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

2009 (1)

B. Miquel and H. Takesue, “Observation of 1.5 µm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” N. J. Phys. 11, 045006 (2009).
[Crossref]

2008 (7)

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

T. Tsurumaru and K. Tamaki, “Security proof for quantum-key-distribution systems with threshold detectors,” Phys. Rev. A 78, 032302 (2008).
[Crossref]

N. J. Beaudry, T. Moroder, and N. Lutkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett. 101, 093601 (2008).
[Crossref] [PubMed]

2007 (3)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007).
[Crossref]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

T. Honjo, H. Takesue, and K. Inoue, “Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs,” Opt. Lett. 32, 1165 (2007).
[Crossref] [PubMed]

2006 (2)

N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14, 10043–10049 (2006).
[Crossref] [PubMed]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

2005 (3)

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

H. Takesue and K. Inoue, “Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804 (2005).
[Crossref]

2004 (4)

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004).
[Crossref]

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Eur. Phys. J. D 30, 2013148 (2004).
[Crossref]

A. Poppe, A. Fedrizzi, R. Ursin, H. Bohm, T. Lorunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[Crossref] [PubMed]

2002 (2)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 (2002).
[Crossref]

2001 (1)

G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[Crossref]

2000 (4)

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[Crossref] [PubMed]

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref] [PubMed]

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

1999 (2)

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

1992 (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
[Crossref] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bellfs theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

Acin, A.

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

Adachi, Y.

M. Koashi, Y. Adachi, T. Yamamoto, and N. Imoto, “Security of entanglement-based quantum key distribution with practical detectors,” arXiv: 0804.0891 (2008).

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Asobe, M.

Baek, B.

Beaudry, N. J.

N. J. Beaudry, T. Moroder, and N. Lutkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett. 101, 093601 (2008).
[Crossref] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
[Crossref] [PubMed]

Berglund, A. J.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[Crossref] [PubMed]

Bohm, H.

Brassard, G.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
[Crossref] [PubMed]

Brendel, J.

G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Chau, H. F.

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

Chi, Yue-Meng

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

Davis, P.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

de Riedmatten, H.

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004).
[Crossref]

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

Diamanti, E.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005).
[Crossref]

Dixon, A. R.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Dynes, J. F.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bellfs theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

Fasel, S.

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Eur. Phys. J. D 30, 2013148 (2004).
[Crossref]

Fedrizzi, A.

Fejer, M. M.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005).
[Crossref]

Fujiwara, M.

Fukuda, H.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Gautier, J.-D.

G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[Crossref]

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Eur. Phys. J. D 30, 2013148 (2004).
[Crossref]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004).
[Crossref]

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Hadfield, R

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007).
[Crossref]

Harada, K.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Honjo, T.

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[Crossref]

T. Honjo, H. Takesue, and K. Inoue, “Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs,” Opt. Lett. 32, 1165 (2007).
[Crossref] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005).
[Crossref]

Imoto, N.

M. Koashi, Y. Adachi, T. Yamamoto, and N. Imoto, “Security of entanglement-based quantum key distribution with practical detectors,” arXiv: 0804.0891 (2008).

Inoue, K.

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[Crossref]

T. Honjo, H. Takesue, and K. Inoue, “Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs,” Opt. Lett. 32, 1165 (2007).
[Crossref] [PubMed]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005).
[Crossref]

H. Takesue and K. Inoue, “Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804 (2005).
[Crossref]

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Inoue, S.

Itabashi, S.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Jennewein, T.

Kamada, H.

Koashi, M.

M. Koashi, Y. Adachi, T. Yamamoto, and N. Imoto, “Security of entanglement-based quantum key distribution with practical detectors,” arXiv: 0804.0891 (2008).

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Kurtsiefer, C.

Kwiat, P. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[Crossref] [PubMed]

Langrock, C.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005).
[Crossref]

Lo, H. K.

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

Lo, Hoi-Kwong

Lorunser, T.

Lutkenhaus, N.

N. J. Beaudry, T. Moroder, and N. Lutkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett. 101, 093601 (2008).
[Crossref] [PubMed]

Marcikic, I.

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004).
[Crossref]

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

Maurhardt, O.

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
[Crossref] [PubMed]

Miki, S.

Miquel, B.

B. Miquel and H. Takesue, “Observation of 1.5 µm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” N. J. Phys. 11, 045006 (2009).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Moroder, T.

N. J. Beaudry, T. Moroder, and N. Lutkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett. 101, 093601 (2008).
[Crossref] [PubMed]

Naik, D. S.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[Crossref] [PubMed]

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Nam, S. W.

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007).
[Crossref]

Namekata, N.

Nishida, Y.

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Peev, M.

Peterson, C. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[Crossref] [PubMed]

Poppe, A.

Preskill, J.

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

Qi, Bing

Qian, Li

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

Ribordy, G.

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Eur. Phys. J. D 30, 2013148 (2004).
[Crossref]

G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[Crossref]

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

Sasaki, M.

Sasamori, S.

Scarani, V.

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004).
[Crossref]

Sharpe, A. W.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Shields, A. J.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Shimizu, K.

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Shor, P. W.

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

Simon, C.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[Crossref] [PubMed]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Suda, M.

Tadanaga, O.

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takesue, H.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

B. Miquel and H. Takesue, “Observation of 1.5 µm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” N. J. Phys. 11, 045006 (2009).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[Crossref]

T. Honjo, H. Takesue, and K. Inoue, “Differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs,” Opt. Lett. 32, 1165 (2007).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005).
[Crossref]

H. Takesue and K. Inoue, “Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804 (2005).
[Crossref]

Tamaki, K.

T. Tsurumaru and K. Tamaki, “Security proof for quantum-key-distribution systems with threshold detectors,” Phys. Rev. A 78, 032302 (2008).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

Tittel, W.

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004).
[Crossref]

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Tokura, Y.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

Tsuchizawa, T.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Tsurumaru, T.

T. Tsurumaru, “Squash operator and symmetry,” Phys. Rev. A 81, 012328 (2010).
[Crossref]

T. Tsurumaru and K. Tamaki, “Security proof for quantum-key-distribution systems with threshold detectors,” Phys. Rev. A 78, 032302 (2008).
[Crossref]

Uchida, A.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Ursin, R.

Waks, E.

E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 (2002).
[Crossref]

Wang, Z.

Watanabe, T.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Weihs, G.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[Crossref] [PubMed]

Weinfurter, H.

White, A. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[Crossref] [PubMed]

Yamada, K.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Yamamoto, T.

M. Koashi, Y. Adachi, T. Yamamoto, and N. Imoto, “Security of entanglement-based quantum key distribution with practical detectors,” arXiv: 0804.0891 (2008).

Yamamoto, Y.

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005).
[Crossref]

E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 (2002).
[Crossref]

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Yoshimura, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Yuan, Z. L.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Eur. Phys. J. D 30, 2013148 (2004).
[Crossref]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004).
[Crossref]

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Zeevi, A.

E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 (2002).
[Crossref]

Zeilinger, A.

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

Zhang, Q.

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16, 19118–19126 (2008).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007).
[Crossref]

Appl. Phys. Lett. (3)

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38, 1669–1670 (2002).
[Crossref]

Eur. Phys. J. D (1)

S. Fasel, N. Gisin, G. Ribordy, and H. Zbinden, “Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods,” Eur. Phys. J. D 30, 2013148 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

J. Mod. Opt. (1)

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).

N. J. Phys. (3)

B. Miquel and H. Takesue, “Observation of 1.5 µm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” N. J. Phys. 11, 045006 (2009).
[Crossref]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” N. J. Phys. 7, 232 (2005).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006).
[Crossref]

Nat. Photon. (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 343 (2007).
[Crossref]

Nature Photon. (1)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photon. 2, 728 (2008).
[Crossref]

Opt. Commun. (1)

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283, 276–287 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (6)

T. Tsurumaru, “Squash operator and symmetry,” Phys. Rev. A 81, 012328 (2010).
[Crossref]

G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[Crossref]

E. Waks, A. Zeevi, and Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 (2002).
[Crossref]

T. Tsurumaru and K. Tamaki, “Security proof for quantum-key-distribution systems with threshold detectors,” Phys. Rev. A 78, 032302 (2008).
[Crossref]

H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69, 050304 (2004).
[Crossref]

H. Takesue and K. Inoue, “Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers,” Phys. Rev. A 72, 041804 (2005).
[Crossref]

Phys. Rev. Lett. (8)

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

N. J. Beaudry, T. Moroder, and N. Lutkenhaus, “Squashing models for optical measurements in quantum communication,” Phys. Rev. Lett. 101, 093601 (2008).
[Crossref] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bellfs theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
[Crossref] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729–4732 (2000).
[Crossref] [PubMed]

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733–4736 (2000).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref] [PubMed]

Science (1)

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

Other (1)

M. Koashi, Y. Adachi, T. Yamamoto, and N. Imoto, “Security of entanglement-based quantum key distribution with practical detectors,” arXiv: 0804.0891 (2008).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Experimental setup.
Fig. 2.
Fig. 2. Coincidence rate (squares) and idler count rate (circles) as a function of idler interferometer temperature.
Fig. 3.
Fig. 3. Sifted and secure key rates as a function of fiber length between Alice and Bob. Theoretical key rates are calculated assuming a fiber loss of 0.2 dB/km.

Tables (1)

Tables Icon

Table 1. QKD results

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

Ψ = 1 2 ( 1 s 1 i + 2 s 2 i )
Ψ 1 4 2 { 1 , p 1 s 1 , p 1 i 1 , p 1 s 1 , p 2 i
1 , p 2 s 1 , p 1 i + 1 , p 2 s 1 , p 2 i
+ 2 2 , p 1 s 2 , p 1 i + 2 2 , p 2 s 2 , p 2 i
+ 3 , p 1 s 3 , p 1 1 + 3 , p 1 s 3 , p 2 i
+ 3 , p 2 s 3 , p 1 i + 3 , p 2 s 3 , p 2 i } ,
R sec = R sif { 1 ( 1 + f ( e ) ) h ( e ) }
P μ ( x ) = μ x ! e μ
Ψ = 1 2 ( a s a i + b s b i )
D k 1 ( 1 α 2 ) k + d k α 2 + d .
Ψ x = ( 1 2 ) x k = 1 x { a sk a ik + b sk b ik }
F ( x ) = Σ y = 0 x ( 1 2 ) x x C y ( D x y + D y ) 2 = Σ y = 0 x ( 1 2 ) x x C y ( D x y 2 + 2 D x y D y + D y 2 ) .
F er ( x ) = Σ y = 0 x ( 1 2 ) x x C y ( 2 D x y D y )
R e = Σ x = 0 P μ ( x ) F ( x ) .
R e , er = Σ x = 0 P μ ( x ) F er ( x )
R e = α 2 μ 4 + ( μ α 2 + 2 d ) 2
R e , er = 1 2 ( μ α 2 + 2 d ) 2
D k k α 2 + 2 d
R t = α 2 μ 4 + ( μ α 2 + 4 d ) 2
R t , er = 1 2 ( μ α 2 + 4 d ) 2
G ( x ) = Σ y = 0 x ( 1 2 ) x x C y ( 2 D x y 2 D y + 2 D y 2 D x y )
T = Σ x = 0 P μ ( x ) G ( x ) .
T e = α 3 μ 2 16 ( 2 + μ ) + 3 4 α 2 d μ 2 + 3 α d 2 μ + 1 2 α 2 d μ + 4 d 3
T t = α 3 μ 2 16 ( 2 + μ ) + 3 2 α 2 d μ 2 + 12 α d 2 μ + α 2 d μ + 32 d 3
T = T e + T t .
R sif = R e + R t T
R er = R e , er + R t , er 1 2 T
e = R er R sif

Metrics