Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design and epitaxy of 1.5 μm InGaAsP-InP MQW material for a transistor laser

Open Access Open Access

Abstract

An InGaAsP-InP transistor laser (TL) at 1.55 μm has been designed and modeled. The proposed TL has a deep-ridge waveguide structure with the multiple quantum wells (MQWs) buried in the base-emitter junction, which provides good optical and electrical confinement and can effectively reduce the optical absorption and lateral leakage current. Good laser performance has been predicted by numerical modeling based on which the epitaxial growth was carried out by metalorganic chemical vapor deposition (MOCVD). The effect of p-dopant (Zn) diffusion on the QW performance was investigated by a re-growth procedure. By introducing a graded p-doping profile, the Zn diffusion into the MQWs was effectively controlled. With an average doping density of 1 × 1018 cm−3 in the base contact layer, the InGaAsP MQWs demonstrated high PL intensity at 1.51 μm and clear satellite diffraction peaks in the XRD spectrum.

©2010 Optical Society of America

1. Introduction

As a newly developed active device, the transistor laser (TL) [1] has drawn great attention in recent years. Taking an electrical signal and simultaneously outputting both an optical signal and an electrical signal, the TL performs as a functional optoelectronic integration [1]. One attractive feature of the TL is the potential of high-speed direct modulation due to the unique carrier dynamics that is different from either conventional bipolar junction transistors (BJTs) or laser diodes (LDs) [2]. The analytical modeling of a TL predicted an enhanced small-signal modulation bandwidth in the common-base configuration [3]. Another interesting feature of the TL is the voltage-controlled operation that is promising for optoelectronic integration and new applications [4]. The voltage-controlled direct modulation of a tunnel junction TL was presented recently [5].

A challenge for TLs is the high base doping density that is typically used in modern heterojunction bipolar transistors (HBTs) to reduce electrical resistance for high-speed consideration. The potential of an enhanced small-signal modulation bandwidth was attributed to the reduced carrier lifetime due to the high doping density in the base [6]. On the other hand, a highly doped base can cause serious problems of excessive carrier recombination and optical absorption. In addition, dopant diffusion from the base into the quantum wells (QWs) in the successive material growth may cause QW degradation. Huang and etc. investigated the Zn diffusion behavior and showed that it had a significant impact on the performance of the InAlGaAs light-emitting transistor [7]. Due to the points mentioned above, so far only TLs with a relatively high threshold and low optical power have been demonstrated [5, 8]. Continuous operation at ~1.55 μm was only achieved at a very low temperature of −180°C [9].

In this paper, we report the design and epitaxial growth of a 1.5 μm InGaAsP-InP TL in which a deep-ridge waveguide structure with an asymmetric doping profile in the base is used for improving the optical and electrical performance.

2. Design

2.1 Epitaxial structure

The proposed epitaxial structure of an InGaAsP-InP n-p-n heterojunction bipolar TL is shown in Table 1 . Six 6-nm 1.2% compressively strained QWs separated by five 9-nm InP-lattice-matched barriers (λ = 1.24 μm) are buried in the base-emitter junction and the center of the waveguide. The upper waveguide is undoped for reducing carrier recombination and optical absorption. The heavily p-doped contact layer is placed away below the QWs for preventing dopant diffusion into the QWs which can significantly affect the optical gain [7]. This design is different from the previously reported TLs [5, 8, 9] where the QWs were sandwiched by the heavily p-doped layers.

Tables Icon

Table 1. The proposed epitaxial structure for a 1.55 μm TL

The p contact layer is a critical factor in the design. InGaAsP-InP laser diodes usually use highly doped (~1019 cm−3) In0.53Ga0.47As as the p-contact layer. Although In0.53Ga0.47As has a smaller bandgap than the QWs, its optical absorption is not a big concern since it is far away from the active region. However in a TL the p contact layer is much closer to the peak of the optical mode than in normal laser diodes. Therefore In0.53Ga0.47As cannot be used as the p contact layer in TLs due to the strong optical absorption. Alternatively, a good ohmic contact can be achieved on InGaAsP with a resistance as low as 10−6 Ω cm2 [10, 11] although it is difficult to realize a high doping density with an effective control of the dopant (Zn2+ in our growth) diffusion. In addition, a very high doping density is not desired considering the extra carrier recombination and absorption. In0.76Ga0.24As0.53P0.47 with a doping density of 1~2 × 1018 cm−3 was used as the base contact material in our growth. The doping density of the region below the base contact can be increased further (1 × 1019 cm−3 was used in the simulation) by Zn diffusion from the Zn alloy in the metal-electrode processing [11, 12].

Using InP as the collector can increase the breakdown voltage but may block the electrons and hence reduce the electrical gain (β = ΔICIB where IC and IB are collector current and base current, respectively). Our design uses a collector consisting of 3 layers: In0.76Ga0.24As0.53P0.47 (the same material as the base), InP, and a compositional grading layer between them. The reverse-biased base-collector junction introduces a gradient in the carrier distribution in the waveguide / base which provides the electrical output (IC) in addition to the optical output.

2.2 Device structure

The TL is designed to be a 250 μm-long edge-emitter with 90% and 30% reflectivities for the front and back facets, respectively. The ridge waveguide is 3 μm wide. The whole device has a symmetric layout with the emitter contact on the top of the ridge, the collector contact on the backside of the wafer, and two base contacts on the top of the two sides of the base contact layer. The wafer is to be etched through the QWs down to the heavily doped p-contact layer. The lateral leakage current is one of the main factors increasing the threshold current in the ridge-waveguide lasers and is more harmful in the TLs with a heavily doped waveguide layer above the QWs due to the shorter carrier lifetime. Hence the region above the QWs is kept undoped in our design. The deeply etched mesa provides better optical confinement and removes the necessity of the heavily doped layer above the QWs. Therefore it can effectively reduce the lateral leakage current and optical absorption. The disadvantage of this deep-ridge design is that it requires high etching accuracy since there is no etch-stop layer in the waveguide.

3. Numerical modeling

3.1 Physical models and key parameters

All the physical models are established in the 2D laser simulator LASTIP. Here we only discuss the aspects crucial to this study. More details of the laser models and parameters used in simulation can be found in Ref [13, 14].

The drift-diffusion model with Fermi statistics is used to describe the 2D carrier transport. Thermionic emission theory is used at the heterojunctions where the carrier transport is mainly related to the band offset (ΔEc/ ΔEg) for which a typical value of 0.4 is assumed [13]. The QWs are assumed to have a step-wise potential profile with parabolic sub-bands. Phonon-assisted scattering between confined and unconfined quantum states is ignored. The effective index method [15] is used for the optical mode calculation. We assume that the TL is to be operated in the normal transistor-behavior region without considering collector breakdown. Therefore impact ionization and Zener tunneling are not included. Thermal effects are not considered.

Several main sources of carrier recombination have been considered. Stimulated emission and spontaneous emission in the QWs are calculated from the band structure and Fermi distribution. The spontaneous emission parameter is assumed to be B = 10−10 cm3·s [14] within the passive layers. The SRH recombination lifetime of electrons and holes are assumed to be 20 ns in the QWs and 100 ns in the other layers [14]. Although InGaAsP-InP has less surface recombination than GaAs, it cannot be ignored for the deeply etched structure and may be critical for a small waveguide. The surface recombination velocity is assumed to be 2.5 × 104 cm·s−1. The value can be reduced to below 4 × 103 cm·s−1 by surface passivation [16]. The Auger recombination is calculated by [17]

Raug=(CnnCpp)×(npni2)
where n and p are electron and hole densities respectively. Assuming that the CHHS Auger process dominates, the Auger coefficients Cn = 0 and Cp = 1.6 × 10−28 cm6⋅s−1 [14] are used.

Also important to the TL is the optical absorption due to the existence of the heavily doped layer close to the active region. A small background loss of α = 5 cm−1 is assumed for the carrier-density-independent mechanisms like defect scattering. The free-carrier absorption due to electrons is ignored since the heavily doped n-type layer is far away from the peak of the optical mode and the absorption coefficient is very small in InGsAsP-InP lasers [14] (kn = 10−18 cm2). Absorption within the valence bands due to the intraband (i.e., free carrier absorption) or interband transitions is the dominant absorption mechanism in the InGsAsP-InP lasers which is roughly proportional to the hole density. The hole absorption coefficient kp = 3.7 × 10−17 cm2 is assumed [18].

Table 2 shows the epitaxial structure of a conventional ridge-waveguide laser diode simulated to evaluate the physical model and parameters of the proposed TL. This laser diode has the same MQW system (the central wavelength of the photoluminescence is at 1548 nm at room temperature) and same waveguide material as the proposed TL in Table 1. The optical output and current vs. voltage (L-I-V) curves of the simulation have been matched to the experiment as shown in Fig. 1 .

Tables Icon

Table 2. The epitaxial structure of a conventional 1.55 μm ridge-waveguide laser diode.

 figure: Fig. 1

Fig. 1 Simulated and experimental L-I-V curves of a ridge-waveguide laser diode. The ridge waveguide is 2 μm wide, 1.8 μm high, and 250 μm long. The reflectivities of the front and back facts are 90% and 30%, respectively. The laser was mounted on a thermal sink and tested at 25°C.

Download Full Size | PPT Slide | PDF

3.2 Simulation results and discussion

Having validated the simulation tool, model, and parameters by matching the simulation and experiment of a conventional ridge-waveguide laser diode, as shown in Fig. 1, we simulated the designed TL. As shown in Fig. 2 , the TL is operated in the common-emitter configuration with the emitter-base junction forward biased and the base-collector junction reverse biased.

 figure: Fig. 2

Fig. 2 The bias configuration and optical mode of the TL. The structure is symmetric in the x-axis mirrored at x=0. Only half is shown. The center of the contours is in the QWs, including a strong overlap between the optical mode and the active region.

Download Full Size | PPT Slide | PDF

The collector I-V curves for varied base current IB are shown in Fig. 3(a) , illustrating the typical transistor characteristics with an electrical gain β around 2 ~ 4. The optical output power from the front facet as a function of IB is shown in Fig. 3(b). There are three regions in each L-I curve: below laser threshold, lasing linear region, and lasing saturation region. The threshold is ~7 mA which is comparable with the fabricated laser diode. The low threshold is expected due to the good optical confinement (as shown in Fig. 2) and reduced lateral leakage current. The slope efficiency of the linear region is ~0.253 W/A which is a little lower than the fabricated laser diode (~0.293 W/A) due to the higher optical absorption and surface recombination. This can be improved by surface passivation [16].

 figure: Fig. 3

Fig. 3 Simulated electrical and optical characteristics of the TL: (a) collector current (IC) as a function of the collector-emitter voltage (VCE) for varied base current (IB); (b) Optical output power as a function of IB for varied VCE.

Download Full Size | PPT Slide | PDF

As shown in the Fig. 3(b), the saturation power depends on the emitter collector voltage VCE that determines the bias condition of the base-collector junction at a certain base voltage VB (VB increases as IB increases). This unique optical saturation phenomenon of TLs has been investigated and explained in Ref [4, 19]. It was attributed to the three-port operation based on which a voltage-controlled laser operation was proposed [4]. The L-V (optical output power vs. VCE) curves of the TL are shown in Fig. 4 . Similar to the L-I curve, the L-V curve also has three regions. The voltage threshold is ~1 V. The saturation power in the L-V curve in this case depends on the base current.

 figure: Fig. 4

Fig. 4 Simulated optical output power as a function of the emitter-collector voltage VCE for varied base current IB.

Download Full Size | PPT Slide | PDF

4. Epitaxial growth

4.1 Growth procedure

The epitaxial growth was carried out by the Thomas Swan metal-organic chemical vapor deposition (MOCVD) system equipped with a close-coupled showerhead. Trimethylgallium (TMGa),trimethylindium (TMIn) were used as the gallium and indium sources, respectively. Arsine (AsH3) and phosphine (PH3) were used as the arsenic and phosphorous sources, respectively. Dimethylzinc (Zn(CH3)2) and silane (SiH4) were used as the precursors of p dopants and n dopants, respectively.

4.2 Measurement and discussion

A fast Fourier transformation spectrometer with a 514 nm Ar+ laser (for measuring the photoluminance (PL) spectrum) and a double crystal X-ray diffraction (XRD) system were used to characterize the MQWs.

A 2 × 1018 cm−3 uniform doping profile was first used in the base contact layer. The PL showed a big blue shift of the central wavelength from the designed 1550 nm to 1440 nm. The intensity was very weak (~ 0.8 a.u.) compared with the same MQW structure buried in the undoped waveguide (~ 1.78 a.u.). No clear satellite diffraction peaks were observed in the XRD spectrum. The quality degradation of the QWs is attributed to the quantum well intermixing (QWI) [20] and non-radiative recombination centers [7] caused by the Zn diffusion from the base contact layer into the QWs during the emitter-layer growth.

To suppress Zn diffusion, we introduced a graded doping profile in the base contact layer with the lowest doping density at the MQWs side and reduced the average doping density to 1 × 1018 cm−3. In addition, we used a re-growth procedure to investigate the Zn diffusion effect on the QW performance. We stopped the growth after growing the MQWs and measured the PL and XRD spectra for comparison. Then we continued to grow the emitter completing the whole TL structure and measured the PL and XRD again. As shown in Fig. 5 , after growing the emitter the PL has a little lower intensity, a 40 nm blue shift of central wavelength (from 1550 nm to 1510 nm), and a broader full width at half maximum (FWHM, from 34.7 meV to 39.7 meV), indicating the QW degradation caused by the Zn diffusion into the QWs. The XRD spectra are shown in Fig. 6 from which we can see a 14.5 nm QW period that has a 0.5 nm difference from the design (15 nm). While five peaks are shown before growing emitter, only four clear peaks are observed after completing the whole structure, which is another proof of QW degradation. Compared with the uniform doping profile, the QW quality was significantly improved by using the graded doping profile: the PL intensity was much stronger (1.42 a.u. vs. 0.8 a.u.), the blue shift of the PL spectrum was notably reduced, and the clear satellite diffraction peaks were demonstrated in the XRD spectrum. Those points indicate that the Zn diffusion into the QWs, although inevitable, has been effectively suppressed during the successive re-growth of the MQWs.

 figure: Fig. 5

Fig. 5 PL spectrum: (a) before growing the emitter and (b) after the complete growth.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 X-ray diffraction spectrum: (a) before growing the emitter and (b) after the complete growth.

Download Full Size | PPT Slide | PDF

The relatively low base-doping density (1 ~ 2 × 1018 cm−3 in our design) is helpful for reducing optical absorption and increasing quantum efficiency but makes the ohmic contact more challenging. The doping density of the base contact layer can be increased further by direct Zn diffusion [21] or facilitated Zn diffusion in the annealing of the Zn-alloyed metal electrode [11, 12] for the ohmic contact and low series resistance.

5. Conclusion

We have designed and numerically modeled an InGaAsP-InP TL which has a deep-ridge structure with the MQWs buried in the base-emitter junction. The purpose of this design is to improve the laser quantum efficiency by reducing both optical loss and electrical loss (i.e., leakage current and carrier recombination in the p layer). Our numerical modeling has predicted a good laser performance with a threshold < 10 mA and a slope efficiency > 0.25 W/A. Based on this numerical design, the epitaxial growth has been carried out by MOCVD. By a re-growth procedure, we were able to evaluate the QWs degradation caused by the Zn diffusion which has been effectively controlled by introducing a graded p-doping profile and reducing the average doping density to 1× 1018 cm−3 in the base contact layer. Based on the design and material demonstrated in this paper, there are two main challenges in fabricating the TL device: highly accurate etching and a p type ohmic contact, for which the processing optimization is currently in progress.

Acknowledgments

The authors of Shenzhen University acknowledge the support of the Ministry of Science and Technology of P. R. China (International Cooperation Project, Grant No. 2008DFA11010). The UBC authors acknowledge the support of the British Columbia Innovation Council, the National Science and Engineering Research Council, and Crosslight Software Inc.

References and links

1. N. Holonyak Jr and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006). [CrossRef]  

2. B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009). [CrossRef]  

3. B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008). [CrossRef]  

4. W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008). [CrossRef]  

5. M. Feng, N. Holonyak Jr, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009). [CrossRef]  

6. M. Feng, N. Holonyak Jr, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007). [CrossRef]  

7. Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008). [CrossRef]  

8. M. Feng, N. Holonyak Jr, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005). [CrossRef]  

9. F. Dixon, M. Feng, N. Holonyak Jr, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008). [CrossRef]  

10. A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990). [CrossRef]  

11. P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996). [CrossRef]  

12. A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000). [CrossRef]  

13. J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000). [CrossRef]  

14. Z.-M. Li, “Physical models and numerical simulation of modern semiconductor lasers,” Proc. SPIE 2994, 698–708 (1997). [CrossRef]  

15. G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996). [CrossRef]  

16. K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005). [CrossRef]  

17. B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006). [CrossRef]  

18. I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993). [CrossRef]  

19. W. Shi, and Z. Duan, R. Vafaei, N. Rouger, B. Faraji, and L. Chrostowski, “Simulation of a 1550 nm InGaAsP-InP transistor laser”, Proc. SPIE 7516, 75160P–1-75160P–7 (2009).

20. W. D. Laidig, N. Holonyak Jr, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981). [CrossRef]  

21. O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985). [CrossRef]  

References

  • View by:

  1. N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006).
    [Crossref]
  2. B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
    [Crossref]
  3. B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
    [Crossref]
  4. W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
    [Crossref]
  5. M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
    [Crossref]
  6. M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
    [Crossref]
  7. Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
    [Crossref]
  8. M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
    [Crossref]
  9. F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
    [Crossref]
  10. A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
    [Crossref]
  11. P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
    [Crossref]
  12. A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
    [Crossref]
  13. J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
    [Crossref]
  14. Z.-M. Li, “Physical models and numerical simulation of modern semiconductor lasers,” Proc. SPIE 2994, 698–708 (1997).
    [Crossref]
  15. G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
    [Crossref]
  16. K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
    [Crossref]
  17. B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
    [Crossref]
  18. I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993).
    [Crossref]
  19. W. Shi, and Z. Duan, R. Vafaei, N. Rouger, B. Faraji, and L. Chrostowski, “Simulation of a 1550 nm InGaAsP-InP transistor laser”, Proc. SPIE 7516, 75160P–1-75160P–7 (2009).
  20. W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
    [Crossref]
  21. O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
    [Crossref]

2009 (2)

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[Crossref]

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[Crossref]

2008 (4)

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
[Crossref]

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[Crossref]

2007 (1)

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[Crossref]

2006 (2)

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006).
[Crossref]

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[Crossref]

2005 (2)

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[Crossref]

2000 (2)

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[Crossref]

J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
[Crossref]

1997 (1)

Z.-M. Li, “Physical models and numerical simulation of modern semiconductor lasers,” Proc. SPIE 2994, 698–708 (1997).
[Crossref]

1996 (2)

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[Crossref]

1993 (1)

I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993).
[Crossref]

1990 (1)

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[Crossref]

1985 (1)

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[Crossref]

1981 (1)

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Abraham, P.

J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
[Crossref]

Amarnath, K.

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[Crossref]

Asamizu, H.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[Crossref]

Bardeen, J.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Beylat, J. L.

I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993).
[Crossref]

Bowers, J. E.

J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
[Crossref]

Bruce, R.

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[Crossref]

Camras, M. D.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Chan, R.

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

Chang, S.-H.

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[Crossref]

Chen, M. L.

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[Crossref]

Choquette, K. T.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Chrosdowski, L.

W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

Chrostowski, L.

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[Crossref]

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

Chu, S. N. G.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[Crossref]

Coleman, J. J.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Corzine, S. W.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Dapkus, P. D.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Dautremont-Smith, W. C.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[Crossref]

Dixon, F.

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[Crossref]

Dupuis, R. D.

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[Crossref]

Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
[Crossref]

Faraji, B.

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[Crossref]

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

Feng, M.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[Crossref]

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[Crossref]

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[Crossref]

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006).
[Crossref]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

Grover, R.

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[Crossref]

Hadley, G. R.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Hess, K.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Ho, P. T.

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[Crossref]

Holonyak, N.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[Crossref]

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[Crossref]

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[Crossref]

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006).
[Crossref]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Huang, Y.

Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
[Crossref]

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[Crossref]

Iguchi, Y.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[Crossref]

Isozumi, S.

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[Crossref]

Ivey, D. G.

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[Crossref]

Jian, P.

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[Crossref]

Joindot, I.

I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993).
[Crossref]

Kanakaraju, S.

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[Crossref]

Katz, A.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[Crossref]

Knight, G.

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[Crossref]

Koide, Y.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[Crossref]

Komiya, S.

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[Crossref]

Kuo, Y. K. K.

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[Crossref]

Laidig, W. D.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Lear, K. L.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Li, Z.-M.

Z.-M. Li, “Physical models and numerical simulation of modern semiconductor lasers,” Proc. SPIE 2994, 698–708 (1997).
[Crossref]

Liou, B. T.

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[Crossref]

Murakami, M.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[Crossref]

Napholtz, S. G.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[Crossref]

Okada, T.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[Crossref]

Piprek, J.

J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
[Crossref]

Pulfrey, D.

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[Crossref]

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

Ryou, J. H.

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[Crossref]

Ryou, J.-H.

Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
[Crossref]

Saitoh, T.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[Crossref]

Scott, J. W.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Shi, W.

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[Crossref]

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

Sobers, R. G.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[Crossref]

Then, H. W.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[Crossref]

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[Crossref]

Thomas, P. M.

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[Crossref]

Ueda, O.

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[Crossref]

Wakao, K.

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[Crossref]

Walter, G.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[Crossref]

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[Crossref]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

Warren, M. E.

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

Wu, C. H.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[Crossref]

Yamaguchi, A.

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[Crossref]

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[Crossref]

Yen, M. W.

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[Crossref]

Zhang, X. B.

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[Crossref]

Appl. Phys. Lett. (6)

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett. 93(14), 143503 (2008).
[Crossref]

M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[Crossref]

F. Dixon, M. Feng, N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[Crossref]

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[Crossref]

M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of the transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[Crossref]

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Electron. Lett. (1)

I. Joindot and J. L. Beylat, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993).
[Crossref]

IEEE J. Quantum Electron. (3)

G. R. Hadley, K. L. Lear, M. E. Warren, K. T. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32(4), 607–616 (1996).
[Crossref]

J. Piprek, P. Abraham, and J. E. Bowers, “Self-consistent analysis of high-temperature effects on strained-layer multiple quantum-well InGaAsP-InP lasers,” IEEE J. Quantum Electron. 36(3), 366–374 (2000).
[Crossref]

B. Faraji, W. Shi, D. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Quantum Electron. 15, 594–603 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

W. Shi, L. Chrosdowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[Crossref]

K. Amarnath, R. Grover, S. Kanakaraju, and P. T. Ho, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17(11), 2280–2282 (2005).
[Crossref]

IEEE Spectr. (1)

N. Holonyak and M. Feng, “The transistor laser,” IEEE Spectr. 43(2), 50–55 (2006).
[Crossref]

J. Appl. Phys. (2)

A. Katz, P. M. Thomas, S. N. G. Chu, W. C. Dautremont-Smith, R. G. Sobers, and S. G. Napholtz, “Pt/Ti Ohmic contact to p++-InGaAsP (1.3μm) formed by rapid thermal processing,” J. Appl. Phys. 67(2), 884–889 (1990).
[Crossref]

O. Ueda, K. Wakao, A. Yamaguchi, S. Isozumi, and S. Komiya, “Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers,” J. Appl. Phys. 57(5), 1523 (1985).
[Crossref]

J. Cryst. Growth (1)

Y. Huang, J.-H. Ryou, and R. D. Dupuis, “Control of Zn diffusion in InP/InAlGaAs-based heterojunction bipolar transistors and light emitting transistors,” J. Cryst. Growth 310(19), 4345–4350 (2008).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

P. Jian, D. G. Ivey, R. Bruce, and G. Knight, “Microstructural study of Au-Pd-Zn ohmic contacts to p-type InGaAsP-InP,” J. Mater. Sci. Mater. Electron. 7(2), 77–83 (1996).
[Crossref]

J. Vac. Sci. Technol. B (1)

A. Yamaguchi, H. Asamizu, T. Okada, Y. Iguchi, T. Saitoh, Y. Koide, and M. Murakami, “Effect of the first antimony layer on AuZn ohmic contacts to p-type InP,” J. Vac. Sci. Technol. B 18(4), 1957–1961 (2000).
[Crossref]

Proc. SPIE (2)

Z.-M. Li, “Physical models and numerical simulation of modern semiconductor lasers,” Proc. SPIE 2994, 698–708 (1997).
[Crossref]

B. T. Liou, M. W. Yen, M. L. Chen, Y. K. K. Kuo, and S.-H. Chang, “Numerical study for 1.55μm AlGaInAs/InP semiconductor lasers,” Proc. SPIE 6368, 636814 (2006).
[Crossref]

Other (1)

W. Shi, and Z. Duan, R. Vafaei, N. Rouger, B. Faraji, and L. Chrostowski, “Simulation of a 1550 nm InGaAsP-InP transistor laser”, Proc. SPIE 7516, 75160P–1-75160P–7 (2009).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simulated and experimental L-I-V curves of a ridge-waveguide laser diode. The ridge waveguide is 2 μm wide, 1.8 μm high, and 250 μm long. The reflectivities of the front and back facts are 90% and 30%, respectively. The laser was mounted on a thermal sink and tested at 25°C.
Fig. 2
Fig. 2 The bias configuration and optical mode of the TL. The structure is symmetric in the x-axis mirrored at x=0. Only half is shown. The center of the contours is in the QWs, including a strong overlap between the optical mode and the active region.
Fig. 3
Fig. 3 Simulated electrical and optical characteristics of the TL: (a) collector current (IC) as a function of the collector-emitter voltage (VCE) for varied base current (IB); (b) Optical output power as a function of IB for varied VCE.
Fig. 4
Fig. 4 Simulated optical output power as a function of the emitter-collector voltage VCE for varied base current IB.
Fig. 5
Fig. 5 PL spectrum: (a) before growing the emitter and (b) after the complete growth.
Fig. 6
Fig. 6 X-ray diffraction spectrum: (a) before growing the emitter and (b) after the complete growth.

Tables (2)

Tables Icon

Table 1 The proposed epitaxial structure for a 1.55 μm TL

Tables Icon

Table 2 The epitaxial structure of a conventional 1.55 μm ridge-waveguide laser diode.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R a u g = ( C n n C p p ) × ( n p n i 2 )

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved