Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Intense ultra-broadband down-conversion from randomly poled nonlinear crystals

Open Access Open Access

Abstract

Randomly poled nonlinear crystals are shown to be able to emit intense ultra-broadband photon-pair fields with properties comparable to those coming from chirped periodically-poled crystals. Their intensities scale linearly with the number of domains. Also photon pairs extending over intervals with durations comparable to one optical cycle can be generated in these crystals.

© 2010 Optical Society of America

1. Introduction

Spontaneous parametric down-conversion (SPDC) with its production of photon pairs belongs to the most fascinating nonlinear optical effects. Two photons comprising a photon pair can be entangled in their degrees of freedom as it was first observed by Hong, Ou, and Mandel [1] for temporal correlations. Nonlinear bulk crystals served nearly exclusively as sources of these photon pairs for many years. However, many highly nonlinear crystals could not be used due to impossibility to achieve natural phase-matching conditions. Here, the concept of additional periodic modulation of nonlinear susceptibility as introduced by Armstrong [2] has become fruitful and resulted in the invention of poling of nonlinear crystals [3]. Highly nonlinear materials in which quasi-phase-matching conditions [4] are met can be efficiently used since then. They have allowed the construction of bright and versatile sources of photon pairs.

Moreover, periodical poling has also allowed to tailor the properties of emitted photon pairs using nonlinear domains with variable lengths (chirped periodical poling). Domains of different lengths in an ordered structure allow an efficient nonlinear interaction in an ultra-wide spectral region extending typically over several hundreds of nm [58]. It has been shown that such photon pairs can posses quantum temporal correlations at the timescale of fs and so can be extraordinarily useful, e.g., in metrology (quantum optical coherence tomography [9]) or quantum-information processing [10].

Alternatively, domains of different lengths can be ordered randomly. The nonlinear interaction can be efficient even in this case [stochastic quasi-phase-matching] as studies of the process of second-harmonic generation indicate [4, 1114]. Here, we show that these structures despite their randomness are able to generate spectrally ultra-wide photon pairs at generation rates comparable to chirped periodically-poled crystals (CPPC). This shows that contributions from the coherent summation of photon-pair fields coming from ordered domains of different lengths in CPPCs are considerably lower than generally accepted. When properly phase compensated photon pairs with correlation times at the fs timescale can be emitted from these structures. Moreover, these structures have usually smaller requirements with respect to fields’ polarization properties and orientation of the nonlinear medium [15]. Also fabrication tolerances are less strict in this case [4]. Practically, technology of poling produces structures with relatively large declinations from an ideal geometry which results in reduction of photon-pair generation rates. There is the hope that the fabricated randomly poled structures can even outperform their chirped periodically-poled counterparts. The extension to 2D or 3D geometries offers additional possibilities including naturally poled materials [15].

2. Spontaneous parametric down-conversion in poled nonlinear crystals

Quantum state |ψ〉 describing a photon pair generated in the process of SPDC in a poled crystal can be written as follows [1]:

|ψ=dωsdωiΦ(ωs,ωi)a^s(ωs)a^i(ωi)|vac,
where a two-photon spectral amplitude Φ gives the probability amplitude of emitting a signal photon at frequency ωs and its idler twin at frequency ωi. It can be obtained in the form:
Φ(ωs,ωi)=g(ωs,ωi)ξpF(Δk(ωs,ωi))δ(ωp0ωsωi)
assuming cw pumping with amplitude ξp, frequency ωp0 and wave-vector kp. Creation operator a^a(ωa) in Eq. (1) generates a photon with wave-vector ka and frequency ωa(a = s, i) into the vacuum state |vac〉. Coupling constant g is given as g(ωs,ωi)=χ(2)(0)ωsωi/[icπns(ωs)ni(ωi)] where χ(2) denotes second-order susceptibility, na(ωa) means index of refraction, and c is speed of light in vacuum. Symbol Δk stands for nonlinear phase mismatch (Δk = kpkski). The stochastic phase-matching function F introduced in Eq. (2) takes the following form:
F(Δk)=n=1NL(1)n1zn1zndzexp(iΔkz).
In Eq. (3), symbol NL gives the number of domains and n-th domain extends from z = zn–1 to z = zn. Positions zn of domain boundaries are random and can be described as zn = zn–1 + l0 + δln (n = 1,..., NL, z0 = 0) using stochastic declinations δln. The basic domain length l0 is determined such that quasi-phase-matching is reached, i.e. l0 = πk0, Δk0Δk(ωs0,ωi0) and ωa0 stands for the central frequency of field a. Independent random declinations δln are assumed to obey the joint Gaussian probability distribution P:
P(δL)=1(πσ)NLexp(δLTBδL).
Covariance matrix B is diagonal and its nonzero elements are equal to 1/σ2. Stochastic vector δL is composed of declinations δln; symbol T stands for transposition.

Integration of the expression in Eq. (3) leaves us with the following simple formula (valid for NL ≫ 1):

F(Δk)=2iΔkj=0NL(1)jexp(iΔkzj).
This formula can be interpreted such that SPDC occurs only in domains with positive susceptibility χ(2) with doubled amplitudes and domains with negative susceptibility χ(2) play only the role of a ’linear’ filler. This elucidates why two neighbouring domains form basic elementary units for the interpretation of properties of photon-pairs [7].

The emitted photon pairs can be characterized by mean spectral density n(ωs,ωi) of the number of photon pairs. The density n is defined along the formula n(ωs,ωi)=ψ|a^s(ωs)a^s(ωs)a^i(ωi)a^i(ωi)|ψav where the symbol 〈〉av means stochastic averaging over an ensemble of random realizations of the crystal. In practice mean values can correspond to averaging over states of photon pairs emitted at different positions in the transverse plane of a naturally-poled material [15]. Or they can just serve as an indicator of expected values for individual realizations. The spectral density n in quantum state |ψ〉 reads:

n(ωs,ωi)=|g(ωs,ωi)|2|ξp|22π|F(Δk(ωs,ωi))|2avδ(ωp0ωsωi).

In the considered random structures, the averaged squared modulus of phase-matching function F, defined as ∫LP(δL)|Fk)|2, is obtained as follows:

|F(Δk)|2av=4Δk2((NL+1)1|H(δk)|2|1H(δk)|2[H(δk)[1H(δk)NL+1[1H(δk)]2+c.c.]);
δk(ωs,ωi) = Δk(ωs,ωi) – Δk0. Symbol c.c. replaces the complex-conjugated term and H(δk) = exp[iδkl0] exp[–(σΔk)2/4]. A detailed analysis of the formula in Eq. (7) shows that 〈|Fk)|2av is peaked around δk = 0. The larger the deviation σ the broader the peak.

We consider CPPC for comparison. In this case, the ordered positions of boundaries are given as zn=nl0+ζ(nNL/2)2l02, ζ′ = ζk0, and ζ stands for a chirping parameter. The phase-matching function Fchirp can then be derived in the form [6]:

Fchirp(Δk)=2πiζΔk3l0exp(iΔkNLl02)exp(iδk24Δkζ)|erf(f(NL/2))erf(f(NL/2))|2,
f(x)=(i/2)(ζΔkxl0+δk/ζΔk) and erf means the error function. It holds that the larger the chirping parameter ζ the broader the phase-matching function Fchirpk).

3. Photon-pair generation rates and intensity spectra

In our investigation, we use spectrally degenerate collinear down-conversion from a poled LiNbO3 crystal pumped at the wavelength λp0=775nm. The signal and idler photons occur at the fiber-optics communication wavelength λs = λi = 1.55 μm. The crystal optical axis is perpendicular to the fields’ propagation direction and is parallel to the vertical direction. All fields are vertically polarized and so the largest nonlinear element χ33(2) is exploited. The basic domain length l0 equals to 9.515 μm. A structure composed of NL = 2000 layers is roughly 19 mm long and typically delivers 2 × 107 photon pairs per second per 100 mW of pumping for ordered positions of boundaries.

The most striking feature of random structures is that the photon-pair generation rate N increases linearly with the number NL of domains (see Fig. 1). On the other hand, standard deviation σ plays the central role in the determination of spectral widths ΔSs and ΔSi of the signal and idler fields. The larger the deviation σ the broader the signal- and idler-field spectra Ss and Si (see Fig. 2a and Fig. 2b for σζ transformation). This can be understood from the behavior of spatial spectrum of the χ(2)(z) modulation participating in phase matching conditions: the larger the deviation σ the broader the spatial spectrum of χ(2)(z). However, the spectral broadening is at the expense of photon-pair generation rates N (see Fig. 2c).

 figure: Fig. 1

Fig. 1 Photon-pair generation rate N as a function of the number NL of domains for an ensemble of random crystals with standard deviation σ equal to 0 m (solid line), 0.5 × 10−6 m (solid line with ▵), and 2 × 10−6 m (solid line with ♦); N = ∫sin(ωs,ωi).

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 a) Signal-field spectral width ΔSs (FWHM) as a function of chirping parameter ζ, b) transformation curve between the standard deviation σ and chirping parameter ζ assuming equal spectral widths ΔSs, and c) photon-pair generation rate N for chirped (solid curve with ○) and random (solid curve) crystals and their ratio rN (rN = N/N chirp, dashed curve) as functions of chirping parameter ζ; NL = 2000.

Download Full Size | PPT Slide | PDF

Similar behavior as observed in random structures has been found in CPPCs [6, 7] considering the chirping parameter ζ instead of the deviation σ. Our investigations have revealed that this similarity is both qualitative and quantitative (see Fig. 2). For any value of the chirping parameter ζ there exists a value of the standard deviation σ such that the spectral widths ΔSs and ΔSi equal. Moreover, also the photon-pair generation rates N are comparable. This behavior is illustrated in Fig. 2 for structures with NL = 2000 domains. The signal-field spectra Ss in CPPCs are extraordinarily wide (larger that 1 μm) for sufficiently large values of parameter ζ (see Fig. 2a). The signal-field spectra Ss coming from random structures can have the same widths assuming sufficiently strong randomness: the transformation curve between the standard deviation σ and chirping parameter ζ conditioned by equal spectral widths ΔSs is plotted in Fig. 2b. The photon-pair generation rates N for random and chirped crystals are compared in Fig. 2c. Photon-pair generation rates N in random crystals reach at least 80 % of those of CPPCs.

Comparison of the signal-field spectra Ss for one typical realization of the random structure and a CPPC (see Fig. 3) reveals that spectra of random structures cover a larger range of frequencies and are composed of many local peaks. Nevertheless, the averaged spectrum of the random crystal has the same FWHM as the considered CPPC (see Fig. 3b).

 figure: Fig. 3

Fig. 3 Signal-field spectrum Ss for a) one realization of the random crystal and b) CPPC (solid curve with ▵) and mean value for an ensemble of random crystals (solid curve with ♦). Spectra Ss are given as Ss = ħωsin(ωs,ωi) and are normalized such that one photon is emitted; σ = 2.3 × 10−6 m, ζ = 1 × 106 m−2, NL = 2000.

Download Full Size | PPT Slide | PDF

4. Temporal correlations

These ultra-wide spectra allow to generate photon pairs with extremely short temporal correlations that can be measured in a Hong-Ou-Mandel interferometer [1]. The coincidence-count rate Rn in this interferometer as a function of relative time delay τ between two photons forms a typical dip (see Fig. 4) that can be described by the formula:

Rn(τ)=11R0Re[exp(iωp0τ)dωsexp(2iωsτ)|F(Δk(ωs,ωp0ωs))|2av],
R0=dωs|F(Δk(ωs,ωp0ωs))|2av.
Entanglement times derived from the width of the coincidence-count dip can be as short as several fs for both random and chirped structures. Each realization of the random crystal leads to a sharp peak as evident from the profile of the averaged coincidence-count rate Rn in Fig. 4a. They mainly differ in amplitudes of oscillations occurring at the shoulders.

 figure: Fig. 4

Fig. 4 a) Coincidence-count rate Rn and b) sum-frequency field intensity Isum as they depend on relative time delay τ for one realization of the random crystal (solid curve), chirped crystal (solid curve with ▵) and an ensemble of random crystals (solid curve with ♦). In b), ideal phase compensation is assumed and curves are normalized such that dτIsum(τ)=1; values of parameters are the same as in Fig. 3.

Download Full Size | PPT Slide | PDF

The behavior observed in the interferometer shows the potential to generate photon pairs with wave-packets extending over the period of only several fs provided that a good phase compensation is reached. The temporal profile of a wave-packet is given by the fourth-order stationary correlation function IΦ(τ) defined as

IΦ(τ)=12TTTdt|vac|E^s(+)(t)E^i(+)(tτ)|ψ|2,
where T denotes detection duration. Function IΦ gives the probability of detecting an idler photon in the instant that precedes the instant of signal-photon detection by τ. In experiment, function IΦ(τ) is obtained from the measurement of intensity Isum of the sum-frequency field generated by two photons mutually delayed by τ[IΦ(τ) ∝ Isum(τ)]. Intensities Isum created by photon pairs coming from the considered ideally phase-compensated structures are plotted in Fig. 4b and demonstrate the principal ability to detect both photons in a window ≈ 5 fs wide. Restricting ourselves to quadratic phase compensation [6, 16, 17], this window is roughly two times wider. Quadratic compensation is more powerful in CPPCs, however, the difference is not large. This emphasizes the potential of the studied photon pairs as a tool of diagnostics of ultra-fast processes in physics, biology or chemistry.

5. Conclusion

Quantitative similarity in properties of photon pairs generated from randomly poled and chirped periodically-poled crystals has been found. Namely ultra-wide signal and idler fields can be emitted from randomly poled crystals. Two photons in a pair can in principle occur together in a temporal window that characterizes one optical cycle. Importantly, photon-pair generation rates are comparable and depend linearly on the number of domains. Contrary to chirped periodically-poled crystals the randomly poled crystals are quite tolerant in fabrication. This gives a great promise for the use of randomly poled crystals as standard bright ultra-wide spectral sources of entangled photon pairs.

Acknowledgments

Support by projects IAA100100713 of GA AVČR, COST OC 09026, 1M06002 of MŠMT and PrF-2010-009 of Palacky University is acknowledged. The authors thank O. Haderka for discussions.

References and links

1. C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985). [CrossRef]   [PubMed]  

2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]  

3. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007). [CrossRef]  

4. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation - Tuning and tolerances,” IEEE J. Quant. Electr. 28, 2631–2654 (1992). [CrossRef]  

5. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

6. S. E. Harris, “Chirp and compress: Toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007). [CrossRef]   [PubMed]  

7. J. Svozilík and J. Peřina Jr., “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009). [CrossRef]  

8. M. F. Saleh, B. E. A. Saleh, and M. C. Teich, “Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion,” Phys. Rev. A 79, 053842 (2009). [CrossRef]  

9. S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomographyby chirped quasi-phase matching,” Opt. Lett. 29, 2429–2431 (2004). [CrossRef]   [PubMed]  

10. T. S. Humble and W. P. Grice, “Spectral effects in quantum teleportation,” Phys. Rev. A 75, 022307 (2007). [CrossRef]  

11. E. Y. Morozov and A. S. Chirkin, “Consecutive parametric interactions of light waves with nonmultiple frequencies in crystals with irregular poled structure,” J. Russian Laser Res. 25, 013902 (2004).

12. X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97, 013902 (2006). [CrossRef]   [PubMed]  

13. A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008). [CrossRef]  

14. G. K. Kitaeva, “Frequency conversion in aperiodic quasi-phase-matched structures,” Phys. Rev. A 76, 043841 (2007). [CrossRef]  

15. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004). [CrossRef]   [PubMed]  

16. G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).

17. S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and Compression of Chirped Biphotons,” Phys. Rev. Lett. 104, 253602 (2010). [CrossRef]   [PubMed]  

References

  • View by:

  1. C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
    [Crossref] [PubMed]
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [Crossref]
  3. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
    [Crossref]
  4. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation - Tuning and tolerances,” IEEE J. Quant. Electr. 28, 2631–2654 (1992).
    [Crossref]
  5. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
  6. S. E. Harris, “Chirp and compress: Toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
    [Crossref] [PubMed]
  7. J. Svozilík and J. Peřina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
    [Crossref]
  8. M. F. Saleh, B. E. A. Saleh, and M. C. Teich, “Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion,” Phys. Rev. A 79, 053842 (2009).
    [Crossref]
  9. S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomographyby chirped quasi-phase matching,” Opt. Lett. 29, 2429–2431 (2004).
    [Crossref] [PubMed]
  10. T. S. Humble and W. P. Grice, “Spectral effects in quantum teleportation,” Phys. Rev. A 75, 022307 (2007).
    [Crossref]
  11. E. Y. Morozov and A. S. Chirkin, “Consecutive parametric interactions of light waves with nonmultiple frequencies in crystals with irregular poled structure,” J. Russian Laser Res. 25, 013902 (2004).
  12. X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97, 013902 (2006).
    [Crossref] [PubMed]
  13. A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
    [Crossref]
  14. G. K. Kitaeva, “Frequency conversion in aperiodic quasi-phase-matched structures,” Phys. Rev. A 76, 043841 (2007).
    [Crossref]
  15. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
    [Crossref] [PubMed]
  16. G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).
  17. S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and Compression of Chirped Biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
    [Crossref] [PubMed]

2010 (1)

S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and Compression of Chirped Biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
[Crossref] [PubMed]

2009 (2)

J. Svozilík and J. Peřina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[Crossref]

M. F. Saleh, B. E. A. Saleh, and M. C. Teich, “Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion,” Phys. Rev. A 79, 053842 (2009).
[Crossref]

2008 (1)

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[Crossref]

2007 (4)

G. K. Kitaeva, “Frequency conversion in aperiodic quasi-phase-matched structures,” Phys. Rev. A 76, 043841 (2007).
[Crossref]

S. E. Harris, “Chirp and compress: Toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[Crossref] [PubMed]

T. S. Humble and W. P. Grice, “Spectral effects in quantum teleportation,” Phys. Rev. A 75, 022307 (2007).
[Crossref]

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
[Crossref]

2006 (1)

X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97, 013902 (2006).
[Crossref] [PubMed]

2004 (3)

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

E. Y. Morozov and A. S. Chirkin, “Consecutive parametric interactions of light waves with nonmultiple frequencies in crystals with irregular poled structure,” J. Russian Laser Res. 25, 013902 (2004).

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomographyby chirped quasi-phase matching,” Opt. Lett. 29, 2429–2431 (2004).
[Crossref] [PubMed]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation - Tuning and tolerances,” IEEE J. Quant. Electr. 28, 2631–2654 (1992).
[Crossref]

1985 (1)

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[Crossref] [PubMed]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

1936 (1)

G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).

1836 (1)

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

Aleksandrovsky, A. S.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Brida, G.

G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation - Tuning and tolerances,” IEEE J. Quant. Electr. 28, 2631–2654 (1992).
[Crossref]

Carrasco, S.

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomographyby chirped quasi-phase matching,” Opt. Lett. 29, 2429–2431 (2004).
[Crossref] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

Chekhova, M. V.

G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).

Chirkin, A. S.

E. Y. Morozov and A. S. Chirkin, “Consecutive parametric interactions of light waves with nonmultiple frequencies in crystals with irregular poled structure,” J. Russian Laser Res. 25, 013902 (2004).

Degiovanni, I. P.

G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Fejer, M. M.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation - Tuning and tolerances,” IEEE J. Quant. Electr. 28, 2631–2654 (1992).
[Crossref]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

Genovese, M.

G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).

Grice, W. P.

T. S. Humble and W. P. Grice, “Spectral effects in quantum teleportation,” Phys. Rev. A 75, 022307 (2007).
[Crossref]

Haidar, R.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Harris, S. E.

S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and Compression of Chirped Biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
[Crossref] [PubMed]

S. E. Harris, “Chirp and compress: Toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[Crossref] [PubMed]

Hong, C. K.

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[Crossref] [PubMed]

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
[Crossref]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

Humble, T. S.

T. S. Humble and W. P. Grice, “Spectral effects in quantum teleportation,” Phys. Rev. A 75, 022307 (2007).
[Crossref]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation - Tuning and tolerances,” IEEE J. Quant. Electr. 28, 2631–2654 (1992).
[Crossref]

Kitaeva, G. K.

G. K. Kitaeva, “Frequency conversion in aperiodic quasi-phase-matched structures,” Phys. Rev. A 76, 043841 (2007).
[Crossref]

Kitaeva, G. Kh.

G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).

Kupecek, P.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Lemasson, P.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation - Tuning and tolerances,” IEEE J. Quant. Electr. 28, 2631–2654 (1992).
[Crossref]

Mandel, L.

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[Crossref] [PubMed]

Martorell, J.

X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97, 013902 (2006).
[Crossref] [PubMed]

Meda, A.

G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).

Morozov, E. Y.

E. Y. Morozov and A. S. Chirkin, “Consecutive parametric interactions of light waves with nonmultiple frequencies in crystals with irregular poled structure,” J. Russian Laser Res. 25, 013902 (2004).

Nasr, M. B.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

Perina, J.

J. Svozilík and J. Peřina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[Crossref]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Rosencher, E.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Saleh, B. E. A.

M. F. Saleh, B. E. A. Saleh, and M. C. Teich, “Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion,” Phys. Rev. A 79, 053842 (2009).
[Crossref]

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomographyby chirped quasi-phase matching,” Opt. Lett. 29, 2429–2431 (2004).
[Crossref] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

Saleh, M. F.

M. F. Saleh, B. E. A. Saleh, and M. C. Teich, “Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion,” Phys. Rev. A 79, 053842 (2009).
[Crossref]

Sensarn, S.

S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and Compression of Chirped Biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
[Crossref] [PubMed]

Sergienko, A. V.

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomographyby chirped quasi-phase matching,” Opt. Lett. 29, 2429–2431 (2004).
[Crossref] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

Shakhura, I. E.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[Crossref]

Shumilkina, O. A.

G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).

Svozilík, J.

J. Svozilík and J. Peřina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[Crossref]

Teich, M. C.

M. F. Saleh, B. E. A. Saleh, and M. C. Teich, “Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion,” Phys. Rev. A 79, 053842 (2009).
[Crossref]

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomographyby chirped quasi-phase matching,” Opt. Lett. 29, 2429–2431 (2004).
[Crossref] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

Torner, L.

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomographyby chirped quasi-phase matching,” Opt. Lett. 29, 2429–2431 (2004).
[Crossref] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

Torres, J. P.

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomographyby chirped quasi-phase matching,” Opt. Lett. 29, 2429–2431 (2004).
[Crossref] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

Vidal, X.

X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97, 013902 (2006).
[Crossref] [PubMed]

Vyunishev, A. M.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[Crossref]

Yin, G. Y.

S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and Compression of Chirped Biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
[Crossref] [PubMed]

Zaitsev, A. I.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[Crossref]

Zamkov, A. V.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[Crossref]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007).
[Crossref]

IEEE J. Quant. Electr. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation - Tuning and tolerances,” IEEE J. Quant. Electr. 28, 2631–2654 (1992).
[Crossref]

J. Russian Laser Res. (1)

E. Y. Morozov and A. S. Chirkin, “Consecutive parametric interactions of light waves with nonmultiple frequencies in crystals with irregular poled structure,” J. Russian Laser Res. 25, 013902 (2004).

Nature (1)

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Phys. Rev. A (6)

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[Crossref] [PubMed]

J. Svozilík and J. Peřina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009).
[Crossref]

M. F. Saleh, B. E. A. Saleh, and M. C. Teich, “Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion,” Phys. Rev. A 79, 053842 (2009).
[Crossref]

T. S. Humble and W. P. Grice, “Spectral effects in quantum teleportation,” Phys. Rev. A 75, 022307 (2007).
[Crossref]

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[Crossref]

G. K. Kitaeva, “Frequency conversion in aperiodic quasi-phase-matched structures,” Phys. Rev. A 76, 043841 (2007).
[Crossref]

Phys. Rev. Lett. (5)

G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. Kh. Kitaeva, A. Meda, and O. A. Shumilkina, “Chirped Biphotons and their Compression in Optical Fibers,” Phys. Rev. Lett. 103, 193602 (2009).

S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and Compression of Chirped Biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
[Crossref] [PubMed]

X. Vidal and J. Martorell, “Generation of light in media with a random distribution of nonlinear domains,” Phys. Rev. Lett. 97, 013902 (2006).
[Crossref] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).

S. E. Harris, “Chirp and compress: Toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Photon-pair generation rate N as a function of the number NL of domains for an ensemble of random crystals with standard deviation σ equal to 0 m (solid line), 0.5 × 10−6 m (solid line with ▵), and 2 × 10−6 m (solid line with ♦); N = ∫sin(ωs,ωi).
Fig. 2
Fig. 2 a) Signal-field spectral width ΔSs (FWHM) as a function of chirping parameter ζ, b) transformation curve between the standard deviation σ and chirping parameter ζ assuming equal spectral widths ΔSs, and c) photon-pair generation rate N for chirped (solid curve with ○) and random (solid curve) crystals and their ratio rN (rN = N/N chirp, dashed curve) as functions of chirping parameter ζ; NL = 2000.
Fig. 3
Fig. 3 Signal-field spectrum Ss for a) one realization of the random crystal and b) CPPC (solid curve with ▵) and mean value for an ensemble of random crystals (solid curve with ♦). Spectra Ss are given as Ss = ħωsin(ωs,ωi) and are normalized such that one photon is emitted; σ = 2.3 × 10−6 m, ζ = 1 × 106 m−2, NL = 2000.
Fig. 4
Fig. 4 a) Coincidence-count rate Rn and b) sum-frequency field intensity Isum as they depend on relative time delay τ for one realization of the random crystal (solid curve), chirped crystal (solid curve with ▵) and an ensemble of random crystals (solid curve with ♦). In b), ideal phase compensation is assumed and curves are normalized such that d τ I sum ( τ ) = 1; values of parameters are the same as in Fig. 3.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

| ψ = d ω s d ω i Φ ( ω s , ω i ) a ^ s ( ω s ) a ^ i ( ω i ) | vac ,
Φ ( ω s , ω i ) = g ( ω s , ω i ) ξ p F ( Δ k ( ω s , ω i ) ) δ ( ω p 0 ω s ω i )
F ( Δ k ) = n = 1 N L ( 1 ) n 1 z n 1 z n d z exp ( i Δ k z ) .
P ( δ L ) = 1 ( π σ ) N L exp ( δ L T B δ L ) .
F ( Δ k ) = 2 i Δ k j = 0 N L ( 1 ) j exp ( i Δ k z j ) .
n ( ω s , ω i ) = | g ( ω s , ω i ) | 2 | ξ p | 2 2 π | F ( Δ k ( ω s , ω i ) ) | 2 av δ ( ω p 0 ω s ω i ) .
| F ( Δ k ) | 2 av = 4 Δ k 2 ( ( N L + 1 ) 1 | H ( δ k ) | 2 | 1 H ( δ k ) | 2 [ H ( δ k ) [ 1 H ( δ k ) N L + 1 [ 1 H ( δ k ) ] 2 + c . c . ] ) ;
F chirp ( Δ k ) = 2 π i ζ Δ k 3 l 0 exp ( i Δ k N L l 0 2 ) exp ( i δ k 2 4 Δ k ζ ) | erf ( f ( N L / 2 ) ) erf ( f ( N L / 2 ) ) | 2 ,
R n ( τ ) = 1 1 R 0 Re [ exp ( i ω p 0 τ ) d ω s exp ( 2 i ω s τ ) | F ( Δ k ( ω s , ω p 0 ω s ) ) | 2 av ] ,
R 0 = d ω s | F ( Δ k ( ω s , ω p 0 ω s ) ) | 2 av .
I Φ ( τ ) = 1 2 T T T d t | vac | E ^ s ( + ) ( t ) E ^ i ( + ) ( t τ ) | ψ | 2 ,

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved