Abstract

We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses’ repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.

© 2014 Optical Society of America

1. Introduction

Tm-doped pulse fiber laser has grabbed tremendous attention in recent years due to its prosperous prospect in variety of applications including LIDAR, remote sensing, laser communication, nonlinear frequency conversion, material processing and so on [14]. Generally, Q-switching and mode-locking are two main methods to generate pulse laser output. Passively mode-locking is an effective technique to acquire ultrashort pulses [5, 6] and typical techniques for passively mode-locking are semiconductor saturable absorber mirrors (SESAMs) [7], graphene saturable absorbers (GSAs) [8], carbon nanotubes (CNTs) [9], gigahertz acoustic core resonances [10], nonlinear amplifying loop-mirror (NALM) [11, 12] and nonlinear polarization rotation (NPR) [13].

There are two interesting pulse operation states in passively mode-locked fiber lasers: pulse bunching and harmonic mode-locking. Pulse bunching is an important phenomenon in passively mode-locked fiber lasers and has been widely investigated [1315]. Pulse bunching is mainly attributed to the overdriven nonlinear effects, which induces the energy quantization of the pulses in laser cavity and consequently results in uniform pulse splitting [16, 17] and pulse bundles (PBs) [1820]. Passively harmonic mode-locked pulse (PHMLP) [2124] is also attractive due to its special advantages such as capability of generating ultra-high frequency and ultrashort mode-locked pulse train, and convenience to tune the order of harmonic oscillation or the repetition rate of pulses. The repetition rate of the PHMLPs can reach as high as tens of GHz and most of the pulse widths are in the range of picosecond or sub-picosecond level, which makes ultrafast applications such as optical clock synchronization, precision metrology, and pump sources for high-repetition-rate supercontinuum sources feasible employing this PHMLP laser source [10, 23].

However, nanosecond pulse trains in passively mode-locked fiber lasers have attracted relatively much less attention. Actually, nanosecond pulses, especially bursts or bundles with nanosecond pulses and continuous nanosecond pulse train at different repetition rate in Tm-doped fiber lasers (TDFLs), can provide eye-safe laser source and play an indispensable role in variety of applications [2527] such as micromachining, material processing, medical care, and environment measurements. In passively mode-locked TDFLs, nanosecond-level PBs and PHMLPs have not been investigated yet up to our knowledge.

In this paper, we present the first nanosecond-level PBs and PHMLPs in a passively mode-locked ring TDFL based on NPR technique. Two polarization controllers (PCs) were employed to perform the NPR. Self-starting PBs at fundamental repetition rate of 448.8 kHz with up to 17 subpulses are generated after the PCs are adjusted and fixed. By changing the positions of the PCs and pump power, up to 6th PHMLPs are obtained. The individual pulse width in PBs and PHMLPs are both around 3-5 ns with uniform shape and intensity. Higher order of PHMLPs and wider pulse durations are also generated by adjusting the PCs. The 3dB spectral bandwidth is as wide as 25 nm, which resembles the characters of noise-like pulse.

2. Experimental setup

Figure 1 depicts the sketch of the passively harmonic mode-locked TDFL. The pump power was provided by a home-made 1550 nm fiber laser with maximum output power of 2.4 W. A 1550/2000 nm wavelength division multiplexer (WDM) was employed to launch the pump power into the laser cavity. The gain medium was a length of 4 m Tm-doped single clad fiber with core diameter of 9 μm and clad diameter of 125 μm. The active fiber’s absorption efficiency at 1550 nm was about 20 dB/m. A length of 440 m SMF-28 fiber was included in the cavity to enhance the nonlinear effects. Two polarization controllers (PCs) and a polarization sensitive isolator (ISO) were used to serve as the polarization control components. 10% of the laser power in the cavity was launched out via a 10/90 fiber coupler. The output pulse train was detected by a high speed InGaAs PIN photodetector (PD) with bandwidth of 7 GHz and a digital oscilloscope with bandwidth of 1 GHz. The spectrum was analyzed by an optical spectrum analyzer (OSA) with resolution of 0.05 nm.

 figure: Fig. 1

Fig. 1 Schematic sketch of the passively mode-locked TDFL.

Download Full Size | PPT Slide | PDF

3. Experimental results and analysis

The laser can operate in continuous wave regime when the pump power is about 500 mW, which is the threshold of this laser. The relatively high threshold of this TDFL is mainly attributed to the high loss of the SMF-28 fiber at 2 μm. Passively mode-locking can be achieved when the pump power is above the threshold and the positions of two PCs are adjusted. PBs are generated by carefully adjusting the positions of the PCs and increasing the pump power, as shown in Fig. 2. Actually, by finely adjusting the PCs, PBs with 1-17 subpulses can all be achieved. It can be found out that the subpulses’ parameters (such as intensity, width and shape) are nearly uniform, despite the not exactly identical spacings between the adjacent subpulses and weak intensity fluctuation. The weak intensity fluctuation may be caused by the competition between the adjacent pulses and the experimental environment noise such as the vibration of the fiber and the turbulence of the air. The PBs can be attributed to the pulse split in the laser cavity due to overdriven nonlinear effects. Actually, in passively mode-locking fiber lasers employing nonlinear polarization rotation, the PBs and/or the multipulses operation in the laser can be attributed to the nonlinear effects in the cavity, peak power limiting effect of the laser cavity, gain competition between the multiple pulses and weakly birefringent effects of the fiber [19]. Increasing the pump power and carefully adjusting the PCs, the nonlinear effects in the laser cavity was notably enhanced and multipulses were generated [1820]. Due to the fiber loss and the low output proportion (10%), the output power of this TDFL is only 10 mW. By exchanging the 10% output port of the coupler with the 90% one, the output power can be increased to about 95 mW, but the consequent subpulses’ number of PBs and order of PHMLPs decrease evidently compared with that of the previous configuration. The main reason is that the low output proportion (10%) results in the relatively high laser intensity in the cavity and hence enhances the nonlinear effects, which is fundamental for pulse splitting and generation of the PBs and high order PHMLPs. So the 10% port was chosen as the output port in order to achieve PBs with more subpulses and PHMLPs with higher order. Actually, the relatively low output power could be scaled up by either power amplification or launching more pump power into the cavity. The side band signal to noise ratio in the experiment is rather high since no obvious noise is observed from the results. Furthermore, the pulse operation of the laser is stable and no evident timing jitter occurs.

 figure: Fig. 2

Fig. 2 PBs in the passively mode-locked TDFL.

Download Full Size | PPT Slide | PDF

Figure 3 shows the digital oscilloscope traces of the PBs with 14 subpulses. It can be concluded that the PBs oscillating regularly at fundamental repetition rate of 448.8 kHz (determined by the cavity length), meanwhile the subpulses have the repetition rate of 28.7 MHz, which is about the 64th harmonic wave of the fundamental frequency. The width of each subpulses are uniform and measured to be about 3.7 ns. The quite broaden pulse width compared with other passively mode-locked pulses’ widths may be attributed to the much long cavity length and the quite anomalous dispersion of the SMF-28 fiber for 2 μm. The PB’s stability is favorable and this nanosecond PBs may find important applications where pulse bursts are required. We believe that PBs with more subpulses can be generated by further increasing the pump power.

 figure: Fig. 3

Fig. 3 Oscilloscope traces of the PBs in the passively mode-locked TDFL. (a): train of PBs; (b): one PB with 14 subpulses.

Download Full Size | PPT Slide | PDF

Figure 4 shows the oscilloscope traces of single pulse in the TDFL. Actually, most of the pulse widths in this TDFL are around 3.7 ns (3.5-5 ns) as shown in the left part of Fig. 4. By adjusting the positions of the PCs, pulse with width of about 304 ns at fundamental frequency can also be obtained, as shown in the right part of Fig. 4.

 figure: Fig. 4

Fig. 4 Oscilloscope traces of individual pulse in the passively mode-locked TDFL.

Download Full Size | PPT Slide | PDF

Finely adjusting the positions of the PCs and scaling up the pump power, PHMLPs can be obtained, as shown in Fig. 5. When individual pulse oscillation at fundamental frequency of 448.8 kHz was built up, the positions of PCs were fixed. Thereafter the pump power was increased slowly, and the higher order harmonic mode-locked pulse train could be generated. The order of the harmonic mode-locked pulses increases as the pump power rises, while the pulse shape and intensity remains almost the same. The order of the harmonic mode-locking is limited by the available pump power and relatively long cavity length.

 figure: Fig. 5

Fig. 5 Harmonic mode-locked pulse trains in TDFL. F: fundamental frequency.

Download Full Size | PPT Slide | PDF

Hysteresis phenomenon of the harmonic mode-locked pulse train’s frequency versus pump power is observed when the PCs’ positions are fixed, as shown in Fig. 6. The pulse frequencies in Fig. 6 correspond to the 1-6 order harmonic mode-locked frequencies. It is clear that the pulse frequency jumps to a higher one when the pump power increases to a certain threshold, and the maximum pulse frequency reaches 6th order harmonic mode-locked frequency when the pump power surpasses 2.25 W. When the pump power decreases gradually from the maximum value of 2.4 W, stable 6th order harmonic mode-locked pulse train maintains until the pump power drops below 1.83 W, which is much lower than the previous frequency jumping threshold of 2.25 W. This hysteresis phenomenon continues and fades until the pump power falls below the lasing threshold. In addition, hysteresis on output power and number of subpulses in PBs are also observed in this TDFL as demonstrated in other passively mode-locked fiber lasers [20, 28].

 figure: Fig. 6

Fig. 6 Hysteresis phenomenon of the harmonic mode-locked pulse train’s frequency versus pump power.

Download Full Size | PPT Slide | PDF

The order of harmonic mode-locking is not limited to 6th, higher order harmonic mode-locked pulses can also be achieved by finely adjusting the PCs. The results are shown in Fig. 7, where the pump power is fixed at 2.1 W. From the traces in Fig. 7 one cannot only see the pulse train at fundamental frequency with 304 ns pulse width aforementioned in Fig. 4, but also see the pulse train at frequency of 6.904 MHz with pulse width of 4.5 ns. Note that the frequency of 6.904 MHz is about 15.4 times of the fundamental frequency of 448.8 kHz. This nanosecond pulse train with fractional time of fundamental repetition rate (15.4 times) may be associated with the dynamic nonlinear saturation effect induced by NPR and the unusual temporal and spectral characters of this passively mode-locked pulse train, since most of the passively mode-locked pulses have rather short pulse width (picosecond, for example) and the spectrum is usually either with side-lobes which indicates the soliton mode operation [29], or with smooth and much wide spectrum which suggests the noise-like mode operation [29, 30].

 figure: Fig. 7

Fig. 7 Oscilloscope traces of pulses with different frequencies and widths in TDFL.

Download Full Size | PPT Slide | PDF

Figure 8 depicts the spectra of the passively mode-locked TDFL in three cases: continuous wave operation, random pulse operation (the pulse repetition rate is not stable at all and hence the pulse appears like “random” pulse) and regular pulse operation (the pulse repetition rate is very stable). It shows that at continuous wave operation regime, the spectrum’s bandwidth is narrow (~1.3 nm). In addition, the central wavelength of the continuous wave lasing can be altered in a range of about 60 nm (1920-1980 nm) by changing the positions of the PCs. The spectrum broadens to several tens nanometers when the PCs are adjusting to generate pulses with random frequency but identical intensity and shape. Keep on adjusting the PCs properly, regular pulse trains (PBs, PHMLPs) are obtained. The 10dB spectral bandwidth can reach as large as ~40 nm, and the 3dB bandwidth is about 25 nm. The pulse train’s broad spectrum has somewhat the character of noise-like pulse, but it is not very smooth. Furthermore, the pulse width is several nanoseconds, which is different from the ultrashort noise-like pulse as demonstrated [29, 30]. These results may be caused by the interaction and competition between the multiple pulses and the polarization modes in the rather long fiber cavity. This broadband spectral property of the harmonic mode-locked pulses makes it a promising laser source for applications such as supercontinuum generation. Furthermore, the pulse width with several nanoseconds enables power amplification more feasible and convenient to make the practical application of this pulse source available.

 figure: Fig. 8

Fig. 8 Spectra of different cases in TDFL.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we present a passively mode-locked TDFL with nanosecond-level PBs and PHMLPs based on NPR. The PBs at fundamental repetition rate of 448.8 kHz can contain the maximum pulses of 17 with uniform pulse shape and intensity. PHMLPs with 6th order and even higher order are obtained with pulse width around 3-5 ns. The maximum repetition rate of the PHMLPs can reach 6.9 MHz, much higher repetition rate can be achieved by shortening the cavity length and/or increasing the pump power. The 3dB spectral bandwidth is about 25 nm, which resembles that of noise-like pulses. The temporal and spectral characters of this TDFL enable efficient power amplification and variety of practical applications. In further endeavors, the tunability and output power are to be improved to enhance the laser source’s practicability in applications. The low loss SM2000 fiber may be employed to lower the threshold of the fiber laser.

Acknowledgment

This work was supported by the Innovation Foundation for Graduates of National University of Defense Technology (Grant No. B130704), National Natural Science Foundation of China (Grant No. 61322505) and program for New Century Excellent Talents in University.

References and links

1. J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011). [CrossRef]  

2. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012). [CrossRef]  

3. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998). [CrossRef]   [PubMed]  

4. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013). [CrossRef]   [PubMed]  

5. M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997). [CrossRef]  

6. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009). [CrossRef]  

7. W. Zhou, D. Shen, Y. Wang, H. Ma, and F. Wang, “A stable polarization switching laser from a bidirectional passively mode-locked thulium-doped fiber oscillator,” Opt. Express 21(7), 8945–8952 (2013). [CrossRef]   [PubMed]  

8. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef]   [PubMed]  

9. Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013). [CrossRef]  

10. M. S. Kang, N. Y. Joly, and P. S. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013). [CrossRef]   [PubMed]  

11. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012). [CrossRef]  

12. M. J. Guy, D. U. Noske, A. Boskovic, and J. R. Taylor, “Femtosecond soliton generation in a praseodymium fluoride fiber laser,” Opt. Lett. 19(11), 828–830 (1994). [CrossRef]   [PubMed]  

13. V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992). [CrossRef]  

14. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994). [CrossRef]  

15. E. P. Ippen, L. Y. Liu, and H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15(3), 183–185 (1990). [CrossRef]   [PubMed]  

16. A. K. Komarov and K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000). [CrossRef]  

17. C. Wang, W. Zhang, K. F. Lee, and K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997). [CrossRef]  

18. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992). [CrossRef]  

19. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005). [CrossRef]  

20. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010). [CrossRef]  

21. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993). [CrossRef]  

22. J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012). [CrossRef]  

23. H. R. Chen, K. H. Lin, C. Y. Tsai, H. H. Wu, C. H. Wu, C. H. Chen, Y. C. Chi, G. R. Lin, and W. F. Hsieh, “12 GHz passive harmonic mode-locking in a 1.06 μm semiconductor optical amplifier-based fiber laser with figure-eight cavity configuration,” Opt. Lett. 38(6), 845–847 (2013). [CrossRef]   [PubMed]  

24. S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013). [CrossRef]  

25. S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010). [CrossRef]   [PubMed]  

26. H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, and H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007). [CrossRef]  

27. A. Ivanenko, S. Turitsyn, S. Kobsev, and M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

28. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992). [CrossRef]  

29. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011). [CrossRef]   [PubMed]  

30. X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013). [CrossRef]  

References

  • View by:

  1. J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
    [Crossref]
  2. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
    [Crossref]
  3. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
    [Crossref] [PubMed]
  4. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
    [Crossref] [PubMed]
  5. M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
    [Crossref]
  6. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
    [Crossref]
  7. W. Zhou, D. Shen, Y. Wang, H. Ma, and F. Wang, “A stable polarization switching laser from a bidirectional passively mode-locked thulium-doped fiber oscillator,” Opt. Express 21(7), 8945–8952 (2013).
    [Crossref] [PubMed]
  8. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  9. Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
    [Crossref]
  10. M. S. Kang, N. Y. Joly, and P. S. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013).
    [Crossref] [PubMed]
  11. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
    [Crossref]
  12. M. J. Guy, D. U. Noske, A. Boskovic, and J. R. Taylor, “Femtosecond soliton generation in a praseodymium fluoride fiber laser,” Opt. Lett. 19(11), 828–830 (1994).
    [Crossref] [PubMed]
  13. V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
    [Crossref]
  14. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
    [Crossref]
  15. E. P. Ippen, L. Y. Liu, and H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15(3), 183–185 (1990).
    [Crossref] [PubMed]
  16. A. K. Komarov and K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000).
    [Crossref]
  17. C. Wang, W. Zhang, K. F. Lee, and K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
    [Crossref]
  18. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
    [Crossref]
  19. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  20. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
    [Crossref]
  21. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
    [Crossref]
  22. J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
    [Crossref]
  23. H. R. Chen, K. H. Lin, C. Y. Tsai, H. H. Wu, C. H. Wu, C. H. Chen, Y. C. Chi, G. R. Lin, and W. F. Hsieh, “12 GHz passive harmonic mode-locking in a 1.06 μm semiconductor optical amplifier-based fiber laser with figure-eight cavity configuration,” Opt. Lett. 38(6), 845–847 (2013).
    [Crossref] [PubMed]
  24. S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
    [Crossref]
  25. S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
    [Crossref] [PubMed]
  26. H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, and H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
    [Crossref]
  27. A. Ivanenko, S. Turitsyn, S. Kobsev, and M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.
  28. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
    [Crossref]
  29. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
    [Crossref] [PubMed]
  30. X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
    [Crossref]

2013 (7)

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

W. Zhou, D. Shen, Y. Wang, H. Ma, and F. Wang, “A stable polarization switching laser from a bidirectional passively mode-locked thulium-doped fiber oscillator,” Opt. Express 21(7), 8945–8952 (2013).
[Crossref] [PubMed]

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[Crossref]

M. S. Kang, N. Y. Joly, and P. S. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013).
[Crossref] [PubMed]

H. R. Chen, K. H. Lin, C. Y. Tsai, H. H. Wu, C. H. Wu, C. H. Chen, Y. C. Chi, G. R. Lin, and W. F. Hsieh, “12 GHz passive harmonic mode-locking in a 1.06 μm semiconductor optical amplifier-based fiber laser with figure-eight cavity configuration,” Opt. Lett. 38(6), 845–847 (2013).
[Crossref] [PubMed]

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

2012 (3)

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[Crossref]

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012).
[Crossref]

2011 (2)

2010 (3)

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[Crossref]

S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

2009 (1)

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

2007 (1)

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, and H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[Crossref]

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

2000 (1)

A. K. Komarov and K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000).
[Crossref]

1998 (1)

1997 (2)

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

C. Wang, W. Zhang, K. F. Lee, and K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[Crossref]

1994 (2)

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

M. J. Guy, D. U. Noske, A. Boskovic, and J. R. Taylor, “Femtosecond soliton generation in a praseodymium fluoride fiber laser,” Opt. Lett. 19(11), 828–830 (1994).
[Crossref] [PubMed]

1993 (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

1992 (3)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

1990 (1)

Abramski, K. M.

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[Crossref]

Ahmad, F.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[Crossref]

Ahmad, H.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[Crossref]

Alam, S. U.

Ali, N. M.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Boskovic, A.

Chavez-Pirson, A.

Chen, C. H.

Chen, D.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Chen, H. R.

Chen, K. P.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[Crossref]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[Crossref] [PubMed]

Chen, T.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[Crossref]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[Crossref] [PubMed]

Chernysheva, M. A.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Chi, Y. C.

Daniel, J. M. O.

Dianov, E. M.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Dimyati, K.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[Crossref]

Dubov, M.

A. Ivanenko, S. Turitsyn, S. Kobsev, and M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

Fang, Q.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

Geng, J.

J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
[Crossref]

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

Guy, M. J.

Harter, D.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

Harun, S. W.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[Crossref]

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

E. P. Ippen, L. Y. Liu, and H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15(3), 183–185 (1990).
[Crossref] [PubMed]

He, X.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Heberle, A. P.

Heidt, A. M.

Heinemann, S.

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, and H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[Crossref]

Hendow, S. T.

Herfurth, H.

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, and H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[Crossref]

Hsieh, W. F.

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

E. P. Ippen, L. Y. Liu, and H. A. Haus, “Self-starting condition for additive-pulse mode-locked lasers,” Opt. Lett. 15(3), 183–185 (1990).
[Crossref] [PubMed]

Ivanenko, A.

A. Ivanenko, S. Turitsyn, S. Kobsev, and M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

Jackson, S. D.

Jiang, S.

J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
[Crossref]

Joly, N. Y.

Jung, Y.

Kang, M. S.

Kieu, K.

King, T. A.

Kobsev, S.

A. Ivanenko, S. Turitsyn, S. Kobsev, and M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

Komarov, A. K.

A. K. Komarov and K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000).
[Crossref]

Komarov, K. P.

A. K. Komarov and K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000).
[Crossref]

Krylov, A. A.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Kryukov, P. G.

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Krzempek, K.

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[Crossref]

Lauterborn, T.

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, and H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[Crossref]

Lee, K. F.

C. Wang, W. Zhang, K. F. Lee, and K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[Crossref]

Li, M.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[Crossref]

Li, Z.

Lin, G. R.

Lin, K. H.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, L. Y.

Liu, X.

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[Crossref]

Lu, Y.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[Crossref]

Luo, A.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Luo, Z.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Ma, H.

Matsas, V. J.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Newson, T. P.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Noske, D. U.

Pantsar, H.

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, and H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[Crossref]

Patwa, R.

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, and H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[Crossref]

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

Petersen, E.

Peyghambarian, N.

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Qian, Q.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Richardson, D. J.

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

Russell, P. S. J.

Saidin, N.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[Crossref]

Shakir, S. A.

Shen, D.

Shi, W.

Simakov, N.

Sobon, G.

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[Crossref]

Sotor, J.

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[Crossref]

Sucha, G.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Taylor, J. R.

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tsai, C. Y.

Turitsyn, S.

A. Ivanenko, S. Turitsyn, S. Kobsev, and M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

Wang, C.

C. Wang, W. Zhang, K. F. Lee, and K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[Crossref]

Wang, F.

W. Zhou, D. Shen, Y. Wang, H. Ma, and F. Wang, “A stable polarization switching laser from a bidirectional passively mode-locked thulium-doped fiber oscillator,” Opt. Express 21(7), 8945–8952 (2013).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[Crossref]

J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
[Crossref]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[Crossref] [PubMed]

Wang, Y.

Wu, C. H.

Wu, H. H.

Xu, S.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Xu, W.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yang, Q.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yang, T.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yang, Z.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yoo, K.

C. Wang, W. Zhang, K. F. Lee, and K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[Crossref]

Yuan, X.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Zen, D. I. M.

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[Crossref]

Zervas, M. N.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Zhang, B.

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[Crossref]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011).
[Crossref] [PubMed]

Zhang, W.

C. Wang, W. Zhang, K. F. Lee, and K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[Crossref]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhou, W.

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Appl. Phys. B (1)

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

Appl. Phys. Express (1)

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a Thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Appl. Phys. Lett. (1)

Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013).
[Crossref]

Chin. Phys. Lett. (1)

S. W. Harun, N. Saidin, D. I. M. Zen, N. M. Ali, H. Ahmad, F. Ahmad, and K. Dimyati, “Self-starting harmonic mode-locked Thulium-doped fiber laser with carbon nanotubes saturable absorber,” Chin. Phys. Lett. 30(9), 094204 (2013).
[Crossref]

Electron. Lett. (3)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Opt. Commun. (4)

A. K. Komarov and K. P. Komarov, “Pulse splitting in a passive mode-locked laser,” Opt. Commun. 183(1-4), 265–270 (2000).
[Crossref]

C. Wang, W. Zhang, K. F. Lee, and K. Yoo, “Pulse splitting in a self-mode-locked Ti sapphire laser,” Opt. Commun. 137(1-3), 89–92 (1997).
[Crossref]

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, “Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber,” Opt. Commun. 285(13-14), 3174–3178 (2012).
[Crossref]

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. A (2)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[Crossref]

Proc. SPIE (2)

J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” Proc. SPIE 8164, 816409 (2011).
[Crossref]

H. Herfurth, R. Patwa, T. Lauterborn, S. Heinemann, and H. Pantsar, “Micromachining with tailored nanosecond pulses,” Proc. SPIE 6796, 67961G (2007).
[Crossref]

Other (1)

A. Ivanenko, S. Turitsyn, S. Kobsev, and M. Dubov, “Mode-locking in 25-km fibre laser,” in Proceedings of ECOC (2010), pp. 1–3.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic sketch of the passively mode-locked TDFL.
Fig. 2
Fig. 2 PBs in the passively mode-locked TDFL.
Fig. 3
Fig. 3 Oscilloscope traces of the PBs in the passively mode-locked TDFL. (a): train of PBs; (b): one PB with 14 subpulses.
Fig. 4
Fig. 4 Oscilloscope traces of individual pulse in the passively mode-locked TDFL.
Fig. 5
Fig. 5 Harmonic mode-locked pulse trains in TDFL. F: fundamental frequency.
Fig. 6
Fig. 6 Hysteresis phenomenon of the harmonic mode-locked pulse train’s frequency versus pump power.
Fig. 7
Fig. 7 Oscilloscope traces of pulses with different frequencies and widths in TDFL.
Fig. 8
Fig. 8 Spectra of different cases in TDFL.

Metrics