Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mid-infrared wavelength multiplexer in InGaAs/InP waveguides using a Rowland circle grating

Open Access Open Access

Abstract

We report the monolithic integration of a 15-channel multiplexer on indium phosphide. It covers the 7.1-to-8.5 µm wavelength range suitable for combining the outputs of several individual lasers. The fabrication is compatible with the growth of active layers, therefore enabling a fully integrate broadband laser source in the mid-infrared spectral range. Channels are accurately spaced in wavelength (97 nm) in good agreement with design.

© 2015 Optical Society of America

1. Introduction

The development of efficient and practical semiconductor lasers in the mid-infrared (Mid-IR) spectral range [1,2] has considerably boosted applications such as gas spectroscopy and remote sensing. In sensor applications, single-mode operation and narrow linewidth has been achieved owing to the distributed feedback (DFB) design consisting in periodically structuring a grating on the active region of the device [3]. Quantum cascade laser (QCL) have been used for cavity ring-down spectroscopy [4], optical feedback-cavity enhanced absorption spectroscopy [5] and many other detection schemes for sensitive and selective quantification of molecular trace gas species. To detect a broader range of gas species with a single chip, arrays of DFB-QCL [6] have been developed to extend the wavelength range. Each laser emits at a specific wavelength and inherits the laser excellent beam quality of DFB. Still, multiple outputs require the use of optical coupling elements and limit their deployment in portable gas detection systems. Therefore, integration of Mid-IR light sources with a Mid-IR waveguide platform is of great interest for future integrated spectroscopic sensor systems.

Silicon-on-insulator (SOI) platform has been demonstrated to be suitable for the fabrication of mid-IR low-loss waveguides and passive components [7], which can be used in the wavelength multiplexing of laser arrays. Arrayed waveguide grating (AWG), planar concave grating (PCG) and angled multimode interferometers have been fabricated on SOI at a wavelength of 3.8 µm [8,9]. Despite the performances of these devices, SiO2 exhibits a strong absorption at longer wavelength limiting further developments of this platform in other regions of the Mid-IR [10]. Beyond 3.8 µm, alternative silicon-based platforms need to be considered. Silicon-on-sapphire and silicon-on-nitride waveguide technologies have been pursued to extend the operating wavelength range up to 4.4 µm and 6.7 µm respectively [10–12]. At longer wavelength, AWG [13] and PCG [14] multiplexers have been reported on germanium-on-silicon (Ge-on-Si) benefiting from a larger transparency window of silicon up to 8 µm [12]. The insertion loss and crosstalk for the PCG are found to be 2.5 dB and 22 dB for transverse electric (TE) polarized light and 4.2 dB and 23 dB for transverse magnetic (TM) polarized light at center wavelength of 5.3 µm. However, this hybrid integration between the multiplexer input waveguides and DFB laser arrays requires a coupling scheme between the two chips, usually bringing these two platforms together through butt-coupling. Robust alignment procedure and high coupling efficiency without parasitic reflections leading to laser perturbations can be nevertheless difficult to achieve.

III-V semiconductor waveguides based on indium phosphide (InP) and indium gallium arsenide (InGaAs) materials have the advantage of exhibiting very low absorption across the whole Mid-IR region from the absorption edge at high photon energies [15] down to a wavelength of 14 µm, where multi-phonon absorption features and free carrier absorption become significant [16,17]. In addition, two-photon absorption and sidewall roughness, which slow down the development of InP in the telecom wavelength bands, are no longer considered as major loss mechanisms in this region. Integrating wavelength multiplexers with light generation and detection elements on the indium-phosphide platform would therefore benefit to the development of broadband and scalable complex photonic integrated circuits in the Mid-IR.

In this paper we report the first integrated Mid-IR multiplexer on the indium phosphide platform covering the 7.1-to-8.5 µm wavelength range. To the best of our knowledge, the spectral range and amplitude exceed significantly the state of the art, confirming the feasibility of using InGaAs/InP devices at longer wavelengths, where absorptive properties of silicon-based materials implemented so far become detrimental. The photonic device is based on an etched diffraction grating, covering a broad spectral range while keeping a very compact size. The fabrication process is fully compatible with the growth of QCL active regions paving the way to a fully integrated monolithic multiplexed laser array [18]. The multiplexer architecture and the fabrication process are described in section 2, the measurement procedure and results are given in section 3 and the multiplexer performances are discussed in section 4.

2. Multiplexer design and fabrication

Requirements for wavelength multiplexing of laser arrays are different from those that are expected for wavelength-division multiplexing (WDM) in fiber-optic communications. Figures of merit for wavelength multiplexers and designed transmission spectra for each wavelength channel are illustrated in Fig. 1. The spectral coverage represents the range of wavelengths covered by the multiplexer and should be large to exploit the full potential of the strong absorption features in the Mid-IR. The channel spacing, corresponding to the wavelength pitch between adjacent inputs, has to be narrower than the tunability range of one single emitter of the laser array to obtain continuous tuning over the spectral coverage. The channel passband, defined as the wavelength range at which the relative power decreases 3 dB below the maximum power, is required to be large, and as flattened as possible in multiplexers to get good power uniformity from the single-output waveguide. The newly introduced channel crossing figure of merit is defined as the ratio of power transmission of a channel at its central wavelength with the power transmission of this channel at the crossing with adjacent channels. A small channel crossing is required to obtain quasi-constant output power over the spectral coverage. The insertion loss represents the total optical power reduction from the multiplexer and the channel crosstalk, the power transmission ratio at its central wavelength with the adjacent channel wavelength.

 figure: Fig. 1

Fig. 1 Figures of merit and simulated spectral response of the multiplexer channels for quasi-transverse magnetic light.

Download Full Size | PPT Slide | PDF

Our multiplexer design features 15 input waveguides and 5 output waveguides as can be seen from Fig. 2. Multiple output waveguides are used to mitigate the risk of fabrication tolerances which could results in a wavelength offset. All these access waveguides have a ridge of 6 µm to enforce single-mode operation at all wavelengths in the spectral range considered. The echelle design is based on a concave grating structure. The light disperses from all input waveguides as enters into the free propagation region. It is then diffracted by the grating and adds in phase, thereby producing interference maxima at a specified output angle. This phase relation is different for all input waveguides and corresponds to well separate spectral transmission window for each channel.

 figure: Fig. 2

Fig. 2 Scanning electron microscopy images of (a) 15-to-5 Rowland circle grating multiplexer, (b) zoom on the flat gold-coated grating facets in which light diffracts and focuses, and (c) zoom on the output waveguides from the free propagation region.

Download Full Size | PPT Slide | PDF

The structure was grown by metal organic chemical vapor deposition (MOCVD) on a 2” Fe-doped InP wafer, and consisted in 0.9 µm thick InGaAs guiding layer followed by 2.4 µm InP capping layer. Waveguide ridges have been patterned using conventional photolithography and reactive ion etching down into the InP substrate. The InGaAs layer was completely etched through by inductively coupled reactive ion etching resulting in vertical etched walls with limited roughness. In order to enhance reflectivity of the grating, a 50 nm thick gold layer was used to coat the facets from Fig. 2(b).

The design is constructed according to the Rowland-type mounting [19] in which the grating is located on a 750 µm radius circle while input and output waveguides are positioned on a twice smaller circle. The intersection point of these two circles lies in the centered of the grating. The first diffraction order grating has a pitch of 6 µm and is composed of 125 periods. The pitch between input waveguides is about 8.3 µm and the wavelength channel spacing is 100 nm, corresponding to a linear dispersion (input waveguide spacing / channel spacing) of 83 at the input waveguide array. All the waveguides point toward the pole of the grating limiting second-order diffraction aberration. The multiplexer is designed for monolithic integration with a laser array. Therefore, the output waveguides are turned 180° by using 500 µm radius bent waveguides. The footprint of the device covers a total area of 2.8 x 3.1 mm2, which is more compact than current multiplexers based on AWG and Y-junctions with large channel spacing and could therefore be preferred on InP platform.

The multiplexer design follows an analytical approach ensuring low insertion loss and low channel crossing [20]. It has been optimized for quasi-TM light, thus very high insertion losses are expected for the quasi-TE mode due to low mode confinement in waveguides. Simulated spectral responses of the fifteen input waveguides are shown on Fig. 1. The spectral coverage is chosen to cover the 7.1-to-8.5 µm range with a channel spacing of 100 nm and a channel passband of 60 nm. The design gives us over 1.9 dB insertion loss, 7.8 dB channel crossing and 22.8 dB channel crosstalk for TM polarized light at 8.0 µm wavelength. The effect of propagation and radiation losses in the waveguides are not taken into account into the model.

3. Device characterization

An external cavity QCL (EC-QCL) tuneable from 7.3 to 8.6 µm was coupled into the input waveguides using a high numerical aperture microscope objective. Output light was collected using a multimode AsSe fiber and then focused on a pyroelectric deuterated triglycine sulfate (DTGS) detector and spectrally analyzed by Fourier transform infrared spectroscopy. The device layout used for the multiplexer characterization is shown in Fig. 3. Transmission of the multiplexer was analyzed by sending the laser beam into one of the five output channels and measured at the exit from one of the fifteen input channels. This method eases the injection and collection of light from all input waveguides. Constant voltage, frequency, duty cycle and temperature were applied to the EC-QCL to have a constant output power at a given position of the EC grating. The laser was operated at a temperature of 20°C in pulsed regime (1% duty cycle and 300 kHz repetition rate). Under these experimental conditions and preliminary tests, constant input power is ensured from one waveguide to another. Transmission loss can therefore be directly estimated by comparing the power levels of multiplexer outputs and out of the reference waveguide, located next to the multiplexer.

 figure: Fig. 3

Fig. 3 Experimental setup to test a multiplexer sample.

Download Full Size | PPT Slide | PDF

Let us consider the input power entering the multiplexer Pini) at wavelength λi, the output powers Prefi) and Poutji) at the reference waveguide and the waveguide output j. The channel transmission at a given position of the external cavity grating i is then defined according to Eq. (1):

Tji)=10log(Poutji)Prefi)).

Since the linewidth of the EC-QCL is narrower than the transmission window of one channel, the wavelength is scanned over the achievable tuning of the EC-QCL source in order to span the transmission window of one channel. In that way, each transmission spectrum is reconstructed taking all maxima over the entire wavelength range, as shown in Fig. 4.

 figure: Fig. 4

Fig. 4 Intensity maxima through channel six (blue triangles) for a complete tuning of the external cavity to plot the envelope function (blue solid line) of the wavelength channel.

Download Full Size | PPT Slide | PDF

3.1 Quasi-TE operation

Figure 5 shows the measured transmission spectra of thirteen adjacent channels. Two out of fifteen cannot be measured at shorter wavelength because they fell outside the tuning range of the laser source. The channel spacing is about 98 ± 20 nm. Wavelength channels have transmission losses ranging from −18 dB to −24 dB and the channel crossing is about 3 dB. Channel transmission decreases linearly between 7.3 µm and 8.2 µm, from −18 dB to −21 dB, attributed to higher propagation losses. Beyond 8.3 µm, the channel transmission collapses associated to operation near cut-off wavelength of the bent waveguides.

 figure: Fig. 5

Fig. 5 Spectral responses of the thirteen out of fifteen multiplexer input channels for TE polarized light.

Download Full Size | PPT Slide | PDF

3.2 Quasi-TM operation

Figure 6 shows the measured transmission spectra of twelve adjacent channels covering wavelength from 7.3 to 8.3 µm. The thirteenth channel could not be measured at longer wavelength due to low level collected power, lower than experimental noise. The channel spacing is about 97 ± 27 nm, which is in good agreement with the target value of 100 nm. As shown in the inset of Fig. 6, a slight deviation in the central wavelength is observed (29 nm at 7.7 µm) as well as in the experimental linear dispersion coefficient (85.6 µm/µm). It can be attributed to the deviation of refractive indexes due to uncertainties in the alloy composition InGaxAs1-x and the deviation from the exact geometry due to fabrication tolerances and can therefore be calibrated in following designs. Channel crossing was measured to be about 2 dB and guarantees good power regularity among the channels. However, insertion losses are higher than the simulated value of −1.9 dB ranging from −18 dB to −31 dB.

 figure: Fig. 6

Fig. 6 Spectral responses of the twelve out of fifteen multiplexer input channels for TM polarized light. Inset: comparison between the experimental central wavelengths and expected values over the input waveguide array.

Download Full Size | PPT Slide | PDF

4. Loss analysis

For quasi-TM operation, the multiplexer channels are accurately spaced in wavelength (97 nm) in good agreement with design. The multiplexer covers a wavelength range from 7.1 µm to 8.3 µm and can therefore be integrated with broadband active region designed in a DFB array configuration to realize mechanically robust, single-mode and narrow-linewidth sources. Channel crossing about 2 dB guarantees power uniformity among the channels. However, high insertion loss and consequently low output power will limit their use in gas analysis applications. Four loss mechanisms have been identified as responsible for such high insertion loss observed in our multiplexer, including propagation losses, radiation losses, unoptimized channel crosstalk and losses on the grating.

Propagation losses, due to the interaction of the guided mode with the sidewall roughness, have been estimated by measuring the finesse of Fabry-Perot fringes resulting from reflection at the waveguide facets following [21]. In single-mode 6 µm-wide straight waveguides, the estimate attenuation is about 2.9 dB/cm at 7.4 µm wavelength for quasi TM polarization. From the path difference between reference and transmission channel waveguides, TM mode contribution to the propagation losses is estimated to account for 0.5 dB at 7.3 µm and supposed to increase with wavelength. Smoothing processes could follow the etching step to reduce sidewall roughness and therefore lower propagation losses [22].

Radiation losses are generally negligible for well confined modes far from cut-off wavelength [23]. When the wavelength increases, the confined mode is getting closer to the cut-off condition and a part of its energy is then transferred to the substrate radiation modes generating losses. Furthermore, radiation losses become significant when waveguides are bent because of distortions of the optical mode and loss energy from phase conservation and sidewall roughness considerations. From finite difference simulations, radiation losses in the 500 µm radius half circle output waveguide appear to be extremely dependent on wavelength, etching depth and waveguide width showing operation near cut-off. Losses are estimated about 4.5 dB at 7.3 µm for the fundamental TM mode. The power non-uniformity from Fig. 6 is then mainly explained by radiation losses originating from bends. As the multiplexer covers a large wavelength region, it is very challenging to satisfy the single mode condition and have low radiation losses for high refractive index contrast waveguides. To circumvent this foundation limitation, the waveguide width could be slightly changed along the fifteen input waveguides to ensure single mode operation and minimize radiation losses along the wavelength range.

From Fig. 7, we notice a high channel crosstalk, affecting the two adjacent wavelength channels. Optical power of side lobes have the same amplitude that the central lobe power (j = 7) and correspond to maxima of adjacent channel transmission spectra (j = 6, 8). The channel passband is therefore difficult to assess. If we compare the powers of adjacent channels contributing at λi = 7.7 µm, losses due to coupling between adjacent waveguides are estimated to be around 2.2 dB / 4.2 dB for TE / TM polarizations respectively. Increasing the pitch between input waveguides would better insulate wavelength channels and therefore enhance the channel crosstalk.

 figure: Fig. 7

Fig. 7 Comparison of the spectral response between experimentation (j = 6, solid line) and simulation for three adjacent channels (j = 5, j = 6 and j = 7, dotted lined).

Download Full Size | PPT Slide | PDF

Of the 19 dB insertion loss at 7.3 µm wavelength, total guiding loss including the curved waveguide section is about 5 dB. Losses from optical power coupled into adjacent waveguides account for 4 dB. This leaves about 10 dB for the grating. Extra insertion losses can arise from lithography imperfections, non-verticality of the grating and Fresnel reflection at the grating facets. A quantum well infrared photodetector camera was set to observe directly the light scattered out from the multiplexer. We observe in Fig. 8 strong light streaks coming out from the grating at 90° angle from the propagation direction pointing out high scattering losses. At longer wavelength, the spot intensity at the grating attenuates considerably. The energy of the no-longer guided mode is transferred into substrate radiation and leaky modes before reaching the grating. Scattering centers which are uniformly distributed over the whole device are then highlighted at longer wavelength by radiation mode. Light streaks are also observed at the input channels coming from mode conversion losses due to optical field mismatch. Further work will be carried out to estimate quantitatively these losses.

 figure: Fig. 8

Fig. 8 Images captured by the QWIP camera of the scattered light from the multiplexer waveguides. The wavelength of the coupled light is (a) 7.83 µm, (b) 8.13 µm and (c) 8.40 µm.

Download Full Size | PPT Slide | PDF

The performance of our multiplexer can considerably be enhanced with careful design of bends, waveguide width and waveguide spacing to prevent from radiation and coupling losses respectively, use of e-beam lithography to improve grating teeth definition and increase the reflection from the grating using highly reflective metal coating or distributed Bragg reflectors [14]. This suggests the development of a complete numerical model which includes major loss mechanisms for significant improvements of the multiplexer performances.

5. Conclusion

In this paper, we demonstrated the first InGaAs/InP waveguide multiplexer covering the Mid-IR region from 7.1 to 8.3 µm. This work is fully compatible with standard QCL process on InP and demonstrates the potential to monolithically integrate light generation and passive optical functions with an individual device. An echelle grating multiplexer based on a Rowland circle was fabricated and tested. Although the insertion loss of the device is higher than previously reported Ge-on-Si PCG-based multiplexer, a comprehensive review gives a better understanding of the device and suggests solutions for further improvements in the development of grating based Mid-IR wavelength multiplexers at longer wavelengths.

Acknowledgments

This work has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement n°317884, the collaborative Integrated project MIRIFISENS. III-V Lab would like to acknowledge das Fraunhofer-Institute für Angewandte Festkörperphysik for the external cavity quantum cascade laser used during characterization of the device.

References and links

1. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012). [CrossRef]  

2. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011). [CrossRef]   [PubMed]  

3. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997). [CrossRef]  

4. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40(30), 5522–5529 (2001). [CrossRef]   [PubMed]  

5. G. Maisons, P. Gorrotxategi Carbajo, M. Carras, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser,” Opt. Lett. 35(21), 3607–3609 (2010). [CrossRef]   [PubMed]  

6. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007). [CrossRef]  

7. M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012). [CrossRef]  

8. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013). [CrossRef]   [PubMed]  

9. Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39(6), 1406–1409 (2014). [CrossRef]   [PubMed]  

10. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010). [CrossRef]  

11. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011). [CrossRef]   [PubMed]  

12. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013). [CrossRef]  

13. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013). [CrossRef]  

14. A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013). [CrossRef]  

15. S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987). [CrossRef]   [PubMed]  

16. L. H. Peng, T. Broekaert, W. Y. Choi, C. Fonstad, and V. Jones, “Defect activated infrared multiphonon excitation in iron-doped semi-insulating indium phosphide,” Appl. Phys. Lett. 59(5), 564–566 (1991). [CrossRef]  

17. W. Bi and A. Li, “The dispersion of the refractive index of III-V semiconductors,” J. Appl. Phys. 71(6), 2826–2829 (1992). [CrossRef]  

18. C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evanescent waveguides on InP,” Proc. SPIE 9370, 937002W (2015).

19. R. März, Integrated Optics: Design and Modeling (Artech House, 1994).

20. R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photonics J. 5(2), 2400123 (2013). [CrossRef]  

21. R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21(13), 581–583 (1985). [CrossRef]  

22. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001). [CrossRef]   [PubMed]  

23. R. G. Hunsperger, Integrated Optics: Theory and Technology, 6th ed. (Springer-Verlag, 2009).

References

  • View by:

  1. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  2. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
    [Crossref] [PubMed]
  3. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
    [Crossref]
  4. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40(30), 5522–5529 (2001).
    [Crossref] [PubMed]
  5. G. Maisons, P. Gorrotxategi Carbajo, M. Carras, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser,” Opt. Lett. 35(21), 3607–3609 (2010).
    [Crossref] [PubMed]
  6. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
    [Crossref]
  7. M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
    [Crossref]
  8. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013).
    [Crossref] [PubMed]
  9. Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39(6), 1406–1409 (2014).
    [Crossref] [PubMed]
  10. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  11. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
    [Crossref] [PubMed]
  12. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
    [Crossref]
  13. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
    [Crossref]
  14. A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
    [Crossref]
  15. S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
    [Crossref] [PubMed]
  16. L. H. Peng, T. Broekaert, W. Y. Choi, C. Fonstad, and V. Jones, “Defect activated infrared multiphonon excitation in iron-doped semi-insulating indium phosphide,” Appl. Phys. Lett. 59(5), 564–566 (1991).
    [Crossref]
  17. W. Bi and A. Li, “The dispersion of the refractive index of III-V semiconductors,” J. Appl. Phys. 71(6), 2826–2829 (1992).
    [Crossref]
  18. C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evanescent waveguides on InP,” Proc. SPIE 9370, 937002W (2015).
  19. R. März, Integrated Optics: Design and Modeling (Artech House, 1994).
  20. R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photonics J. 5(2), 2400123 (2013).
    [Crossref]
  21. R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21(13), 581–583 (1985).
    [Crossref]
  22. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [Crossref] [PubMed]
  23. R. G. Hunsperger, Integrated Optics: Theory and Technology, 6th ed. (Springer-Verlag, 2009).

2015 (1)

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evanescent waveguides on InP,” Proc. SPIE 9370, 937002W (2015).

2014 (1)

2013 (5)

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photonics J. 5(2), 2400123 (2013).
[Crossref]

2012 (2)

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

2011 (2)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

2010 (2)

2007 (1)

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

2001 (2)

1997 (1)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

1992 (1)

W. Bi and A. Li, “The dispersion of the refractive index of III-V semiconductors,” J. Appl. Phys. 71(6), 2826–2829 (1992).
[Crossref]

1991 (1)

L. H. Peng, T. Broekaert, W. Y. Choi, C. Fonstad, and V. Jones, “Defect activated infrared multiphonon excitation in iron-doped semi-insulating indium phosphide,” Appl. Phys. Lett. 59(5), 564–566 (1991).
[Crossref]

1987 (1)

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
[Crossref] [PubMed]

1985 (1)

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21(13), 581–583 (1985).
[Crossref]

Abell, J.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Adachi, S.

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
[Crossref] [PubMed]

Atanackovic, P.

Audet, R.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Baillargeon, J. N.

Belkin, M. A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Ben Masaud, T. M.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Bewley, W. W.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Bi, W.

W. Bi and A. Li, “The dispersion of the refractive index of III-V semiconductors,” J. Appl. Phys. 71(6), 2826–2829 (1992).
[Crossref]

Bour, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Broekaert, T.

L. H. Peng, T. Broekaert, W. Y. Choi, C. Fonstad, and V. Jones, “Defect activated infrared multiphonon excitation in iron-doped semi-insulating indium phosphide,” Appl. Phys. Lett. 59(5), 564–566 (1991).
[Crossref]

Brulis, V. J.

R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photonics J. 5(2), 2400123 (2013).
[Crossref]

Canedy, C. L.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Capasso, F.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40(30), 5522–5529 (2001).
[Crossref] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

Carras, M.

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evanescent waveguides on InP,” Proc. SPIE 9370, 937002W (2015).

G. Maisons, P. Gorrotxategi Carbajo, M. Carras, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser,” Opt. Lett. 35(21), 3607–3609 (2010).
[Crossref] [PubMed]

Cerrina, F.

Chapman, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Chen, X.

Chiles, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Cho, A. Y.

Choi, W. Y.

L. H. Peng, T. Broekaert, W. Y. Choi, C. Fonstad, and V. Jones, “Defect activated infrared multiphonon excitation in iron-doped semi-insulating indium phosphide,” Appl. Phys. Lett. 59(5), 564–566 (1991).
[Crossref]

Chong, H. M. H.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Corzine, S.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Diehl, L.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Duvall, S. G.

Eggleton, B. J.

Emerson, N. G.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Faist, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

Fathpour, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Fonstad, C.

L. H. Peng, T. Broekaert, W. Y. Choi, C. Fonstad, and V. Jones, “Defect activated infrared multiphonon excitation in iron-doped semi-insulating indium phosphide,” Appl. Phys. Lett. 59(5), 564–566 (1991).
[Crossref]

Gallagher, D. F. G.

R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photonics J. 5(2), 2400123 (2013).
[Crossref]

Gilles, C.

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evanescent waveguides on InP,” Proc. SPIE 9370, 937002W (2015).

Gmachl, C.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Gorrotxategi Carbajo, P.

Grillet, C.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Höfler, G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Hu, Y.

Hudson, D.

Hutchinson, A. L.

Jabenransary, E.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Jackson, S. D.

Jones, V.

L. H. Peng, T. Broekaert, W. Y. Choi, C. Fonstad, and V. Jones, “Defect activated infrared multiphonon excitation in iron-doped semi-insulating indium phosphide,” Appl. Phys. Lett. 59(5), 564–566 (1991).
[Crossref]

Khan, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Khokhar, A. Z.

Kim, C. S.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Kim, M.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Kimerling, L. C.

Kosterev, A. A.

Kuyken, B.

Lee, B. G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Lee, K. K.

Lepage, G.

Li, A.

W. Bi and A. Li, “The dispersion of the refractive index of III-V semiconductors,” J. Appl. Phys. 71(6), 2826–2829 (1992).
[Crossref]

Li, F.

Li, T.

Lim, D. R.

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Loo, R.

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Lycett, R. J.

R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photonics J. 5(2), 2400123 (2013).
[Crossref]

Ma, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

MacArthur, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Madden, S. J.

Magi, E.

Maisons, G.

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evanescent waveguides on InP,” Proc. SPIE 9370, 937002W (2015).

G. Maisons, P. Gorrotxategi Carbajo, M. Carras, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser,” Opt. Lett. 35(21), 3607–3609 (2010).
[Crossref] [PubMed]

Malik, A.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Malinovsky, A. L.

Mashanovich, G. Z.

Merritt, C. D.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Meyer, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Milosevic, M. M.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Mitchell, C. J.

Moghe, Y.

Moss, D. J.

Muneeb, M.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

Napoleone, A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Nedeljkovic, M.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

O’Brien, C.

Oakley, D. C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Pathak, S.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Penades, J. S.

Peng, L. H.

L. H. Peng, T. Broekaert, W. Y. Choi, C. Fonstad, and V. Jones, “Defect activated infrared multiphonon excitation in iron-doped semi-insulating indium phosphide,” Appl. Phys. Lett. 59(5), 564–566 (1991).
[Crossref]

Pflügl, C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Read, A.

Reed, G. T.

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39(6), 1406–1409 (2014).
[Crossref] [PubMed]

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

Roelkens, G.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Romanini, D.

Ryckeboer, E.

Shimura, Y.

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Shin, J.

Simozrag, B.

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evanescent waveguides on InP,” Proc. SPIE 9370, 937002W (2015).

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

Sivco, D. L.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Thomson, D. J.

Tittel, F. K.

Van Campenhout, J.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Verheyen, P.

Vurgaftman, I.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Walker, R. G.

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21(13), 581–583 (1985).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jabenransary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101(12), 121105 (2012).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

L. H. Peng, T. Broekaert, W. Y. Choi, C. Fonstad, and V. Jones, “Defect activated infrared multiphonon excitation in iron-doped semi-insulating indium phosphide,” Appl. Phys. Lett. 59(5), 564–566 (1991).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

Electron. Lett. (1)

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21(13), 581–583 (1985).
[Crossref]

IEEE Photonics J. (1)

R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photonics J. 5(2), 2400123 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

J. Appl. Phys. (1)

W. Bi and A. Li, “The dispersion of the refractive index of III-V semiconductors,” J. Appl. Phys. 71(6), 2826–2829 (1992).
[Crossref]

Nat. Commun. (1)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B Condens. Matter (1)

S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter 35(14), 7454–7463 (1987).
[Crossref] [PubMed]

Proc. SPIE (1)

C. Gilles, G. Maisons, B. Simozrag, and M. Carras, “Monolithic coupling of QCLs in evanescent waveguides on InP,” Proc. SPIE 9370, 937002W (2015).

Other (2)

R. März, Integrated Optics: Design and Modeling (Artech House, 1994).

R. G. Hunsperger, Integrated Optics: Theory and Technology, 6th ed. (Springer-Verlag, 2009).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Figures of merit and simulated spectral response of the multiplexer channels for quasi-transverse magnetic light.
Fig. 2
Fig. 2 Scanning electron microscopy images of (a) 15-to-5 Rowland circle grating multiplexer, (b) zoom on the flat gold-coated grating facets in which light diffracts and focuses, and (c) zoom on the output waveguides from the free propagation region.
Fig. 3
Fig. 3 Experimental setup to test a multiplexer sample.
Fig. 4
Fig. 4 Intensity maxima through channel six (blue triangles) for a complete tuning of the external cavity to plot the envelope function (blue solid line) of the wavelength channel.
Fig. 5
Fig. 5 Spectral responses of the thirteen out of fifteen multiplexer input channels for TE polarized light.
Fig. 6
Fig. 6 Spectral responses of the twelve out of fifteen multiplexer input channels for TM polarized light. Inset: comparison between the experimental central wavelengths and expected values over the input waveguide array.
Fig. 7
Fig. 7 Comparison of the spectral response between experimentation (j = 6, solid line) and simulation for three adjacent channels (j = 5, j = 6 and j = 7, dotted lined).
Fig. 8
Fig. 8 Images captured by the QWIP camera of the scattered light from the multiplexer waveguides. The wavelength of the coupled light is (a) 7.83 µm, (b) 8.13 µm and (c) 8.40 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T j i ) = 10 log( P out j i ) P ref i ) ).

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved