Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials

Open Access Open Access

Abstract

In this paper, we theoretically and experimentally demonstrate a three-dimensional metamaterial that can motivate electromagnetic induced transparency (EIT) by using circular polarized wave as stimulations. The unit cell consists of a pair of metallic strips printed on both sides of the printed circuit board (PCB), where a conductive cylinder junction is used to connect the metal strips by drilling a hole inside the substrate. When a right circularly polarized wave is incident, destructive interference is excited between meta-atoms of the 3D structure, the transmission spectrum demonstrates a sharp transparency window. A coupled oscillator model and an electrical equivalent circuit model are applied to quantitatively and qualitatively analyze the coupling mechanism in the EIT-like metamaterial. Analysis in detail shows the EIT window’s amplitude and frequency are modulated by changing the degree of symmetry breaking. The proposed metamaterial may achieve potential applications in developing chiral slow light devices.

© 2016 Optical Society of America

1. Introduction

Metamaterials are artificial materials that have fascinating properties [1]. Through carefully designing the structures and geometries of subwavelength unit cells, metamaterials have the ability to manipulate the propagation behavior of electromagnetic (EM) waves, including its amplitude, phase [2,3], polarization [4,5] and linear/angular momentum [6]. Many exceptional phenomena such as subwavelength imaging, hologram, beam shaper, invisible cloaks [7–9] have been demonstrated. Their applications have been expanded from the microwave band to the THz, IR and visible frequencies [10]. The attractive properties of various metamaterials rely on the interaction between incident EM waves and the meta-atoms. Due to the wave-particle duality, the underlying mechanism of coupling and interference between meta-atoms may also link the classic picture to the quantum picture. In recent years, by means of manipulating the interaction between light and meta-atoms, there are a lot of researches focused on using metamaterial to mimic the quantum phenomena such as Electromagnetic induced transparency (EIT), Fano resonance [11], spin-orbit interaction [12], Purcell effect [13], and so on. Among these phenomena, EIT has been considered as a possible means to realize slow light for future sensing and communication devices [14]. In most of the designs, the EIT response is implemented in the metamaterial by taking advantage of meta-atom’s symmetry breaking [15]. The underlying mechanism of EIT in metamaterial system is interpreted by hybridization between the so called “dark mode” meta-atom and “bright mode” meta-atom [16]. Due to the excitation of the incident linear polarization light, subwavelength electric/magnetic dipolar or multipolar are induced in the meta-atoms. Destructive interference between the dipole/multipole will create a single transmission window that arises from an opaque background. This EIT-like spectra in metamaterial can perfectly mimic a three-level quantum system while the group velocity of incident light in these metamaterials will be greatly reduced or even stopped [17,18]. More complex dual EIT metamaterial is also studied in [19,20] to analog a four-level tripod quantum system.

In majority of the previous works, linearly polarized EM waves are used to excite metamaterial-based EIT. As a result, slow-light effects are limited to linearly polarized waves [21,22]. However, circularly polarized (CP) waves are also widely used in optical devices and experiments. In recent years, different kinds of chiral metamaterials have been proposed to manipulate handedness waves, various phenomenon such as negative index [23], asymmetry transmission [24], Berry phase [25], polarization rotation [26,27] for CP waves have been implemented. The realization of slowing down CP light may provide the possibility to construct handedness dependent optical storage and communication devices. However to the authors’ knowledge, the EIT-like metamaterial for circular polarization wave is not thoroughly studied. Only very recently, the authors demonstrate the EIT effect of circularly polarized waves using Born-Kuhn type resonators mixed with split ring resonators [28]. Meanwhile, most EIT-metamaterials make use of symmetry breaking “meta-atoms” on a planar to engineer the “dark mode” and “bright mode” interference [29]. These works give a clue that handedness sensitive EIT of CP light can be achieved in chiral metamaterials with symmetry breaking. Also recently, in our previous work [30,31], a unique three-dimensional design was proposed to implement polarization-dependent EIT for linear polarized waves. The 3D structure brings in more design freedom for metamaterial excogitation. Inspired by these valuable works, we use LCP/RCP electromagnetic waves to excite EIT-like response in symmetry breaking 3D chiral metamaterial. The proposed structure shows circular dichroism (CD) and optical activity as in conventional 3D chiral metamaterials [32] and two-dimensional metasurface with planar chiral plasmonic metamolecules [33]. A typical EIT-like transparency window can be achieved under RCP incidence while it vanishes at LCP incidence. The EIT response can be tailored through changing the asymmetry degree of the unit cells. The blueshift of EIT window can be explained by employing an equivalent circuit model. Both numerical simulated and experimentally measured results verified these classic analoies of EIT-like and related Fano-like resonance spectra. An analytical coupled oscillator model is applied to reproduce the transparency spectra that enhances the understanding of the underlying mechanism. Compared with previous work [28], the proposed structure provided an alternative simple and efficient solution to tailor the EIT-like phenomenon in metamaterial for CP waves.

2. Design, model and simulation

The proposed 3-D metamaterial with a unit cell is shown in Fig. 1(a), where the meta-atom has a continuous metallic strip in both the top and bottom side. In order to connect the top and bottom arms, one vertical metallic cylindrical junction was fabricated to pierce through dielectric layer to form a three-dimensional structure. The bottom strip is parallel to the x-axis while the top strip is rotated at an angle θ=15° from the x axis. The whole length of both strips is 8.2mm. In order to break the symmetry of the structure, the copper via hole is not placed at the center of each metal strip. The distance between the left end of the top side strip and the via hole’s center is a = 3.5mm while for the case of the bottom strip the distance is c = 4.7mm. The radius of the hole is r = 0.7mm, and the thickness of the substrate is 0.81mm which is made from Rogers RO4003 material with a relative permittivity of 3.38.

 figure: Fig. 1

Fig. 1 (a) Schematic of the EIT-like metamaterial under circular polarization wave incidence; (b) top panel photograph of the fabricated sample, (c) bottom panel photograph of the fabricated sample.

Download Full Size | PPT Slide | PDF

The full-wave numerical simulation software CST microwave studio was employed to analyze the spectral response of our proposed design. Open boundary conditions were set along the light propagating direction (z-direction), and unit cell boundary conditions were applied at the x-y plane. The input and output Floquet ports are excited with circular polarized waves. After optimizing the parameters in simulations, experimental samples with overall dimension of 180 × 180 mm2 were fabricated using the printed circuit board (PCB) technique, whose images of top and bottom panel are shown in Fig. 1(b) and 1(c). The spectral responses were measured by circular polarized antennas used as emitter and receiver respectively. A vector network analyzer (Agilent N8362B) was employed to calibrate, store and retrieve data.

Our specific design breaks the symmetry of the 3D volumetric meta-molecular, the proposed structure has no mirror symmetry plane which can be regarded as 3D chiral metamaterial. The chirality in chiral metamaterials offers great possibilities in the control of light polarizations, optical activity and circular dichroism which can exceed the effects obtained in natural chiral materials. In this work, the chirality of the proposed metamaterial provide distinct transmission spectral for left- and right handed circularly polarized incident waves as shown in the Fig. 2(a) and 2(b), where |TRR| (|TLL|) is defined as the amplitude ratio between the RCP (LCP) transmitted through the metamaterial and the RCP (LCP) incident wave. An absolute circular dichroism (CD) (defined as |TRR||TLL|) is observed in the frequency band from 10.7GHz to 13.9GHz. Meanwhile, as a right handed CP wave is incident from the top of the metamaterial, a sharp transparency window with the transmission peak at 11.70 GHz is switched on while it disappears under the incidence of LCP wave. It can be observed that the measurement results agree well with the simulation results.

 figure: Fig. 2

Fig. 2 (a) and (b) Simulated and measured transmission spectra of EIT-like metamaterial under RCP and LCP incidence; (c) Simulated linear polarization rotation angle and ellipticity angle of the transmitted wave; (d) simulated time-domain pulse before and after transmitting the blank substrate, the EIT-like metamaterial sample, respectively.

Download Full Size | PPT Slide | PDF

To analyze the chirality of the handedness EIT system, the optical activity of chiral medium is characterized by the rotation of the polarization plane of a linearly polarized light as it passes through the chiral medium. It is defined as the polarization rotation angle of elliptically polarized light which isθ=[arg(TRR)arg(TLL)]/2. Another chiral property is circular dichromism which characterizes the difference between the transmissions of two CP polarizations. A mathematical definition of CD isη=0.5·tan1[(|TRR|2|TLL|2)/(|TRR|2+|TLL|2)]. For the proposed chiral metamaterial, an optical activity of ±30 is observed around 12GHz as shown in Fig. 2(c), the CD property can also be observed near the transparency window.

The most important feature of EIT-like metamaterial is slow wave propagation. To demonstrate this property in the proposed design, we simulate a RCP wave carrying Gaussian shape pulse that is transmitted normally through the infinite monolayer of the metamaterial. The Gaussian pulse is centered at 11.7GHz with a 1.5GHz bandwidth. In simulation the distance between the source plane and the transmission probe plane is 10mm. From Fig. 2(d), it shows that the peak of the incident Gaussian pulse appears at 1.2ns, when the proposed meta-atom (metallic part of the unit cell) exists, the peak of the transmitted pulse emerges at 1.6685ns. If we remove the meta-atom, the peak of the transmitted pulse emerges at 1.26ns. This means that the transmitted pulse experience a much longer delay time. Due to the strong dispersion characteristics of the metamaterial, the transmitted pulse through the metamaterial becomes much wider than the incident pulse.

In order to understanding the resonance and coupling mechanism between the meta-atoms, we plot the simulated surface current distributions under LCP/RCP light incidence in Fig. 3 respectively. The frequencies are chosen as two transmission dips and a transparency peak frequency for RCP incidence: 10.77GHz, 13.85GHz and 11.70GHz. For both RCP/LCP incidence case, at the lower frequency of the transmission dips, the surface currents run on the metallic structure following two loop paths due to the existence of the metal via as shown in Fig. 3(a) and 3(b). The role that each twisted loop current plays is equivalent to a magnetic dipole. The direction of both magnetic dipoles are antiparallel. Since the current intensity on the left loop and the right loop are comparable, the interaction between the magnetic dipoles can be regarded as strong constructive interference. At another transmission dip frequency (13.85GHz), the resonance is caused by the interaction between a twisted electric dipole and two antiparallel electric dipoles as shown in Fig. 3(e) and 3(f). Thus the system can be viewed to work in a symmetric mode. These working modes are quite similar to that described in [14]. However, in [14] the currents flow on a planar 2D unit cell and the stimulation wave are linear polarized.

 figure: Fig. 3

Fig. 3 (a), (c) and (e) surface current distribution under LCP illumination at 10.77GHz, 11.7GHz and 13.85GHz respectively; (b), (d) and (f) surface current distribution under RCP illumination at 10.7GHz, 11.7GHz and 13.85GHz respectively

Download Full Size | PPT Slide | PDF

The transparency peak at 11.70GHz for the RCP incidence case can also be well explained using the surface current distribution. Figure 3(d) shows that the induced circular currents on the left and right part of the proposed structure are still antiparallel to each other. But differs from those shown in Fig. 3(b), the current density on the right path is much weaker than that of the left one. This can be regarded as evidence of the destructive interference. On the other hand, when the 11.7GHz LCP wave incidents, the loop currents run parallel to each other, their strength are also comparable as shown in Fig. 3(c), which means both twisted asymmetry U-shape resonator works at quasi-bright mode, thus, the typical EIT response vanished in this case.

The current distribution plots illustrate that the loop currents flow along twisted-U shape paths. The coupling mechanism of the two twisted U shape resonator might have an electric analogy using RLC equivalent circuit. An electrical analogy model [34] for the EIT-like phenomenon in metamaterial is considered as shown in Fig. 4(b). The resonance atom is modeled using a resonant circuit formed by coupled RLC circuit. The resistance, inductance, and capacitance of each loop are represented by Ri, Li, Ci, respectively. The coupling capacitor C models the coupling between the two loop shaped meta-atoms. The induced transparency is investigated by analyzing the power transfer from the voltage source to the resonant circuit R2 L2C2. When geometric parameters of the structure change, the value of lumped elements in the electrical analogy model will change accordingly as well as the amplitude and frequency of transparency window. This intuitive analogy model enables us to study tunable EIT-like phenomena based on the proposed structure which will be discussed in the subsequent section of this article.

 figure: Fig. 4

Fig. 4 (a) Comparison between the simulated transmission spectra and the analytically calculated spectra based on two particle model. (b) An electric circuit analogy model for the 3D chiral metamaterial

Download Full Size | PPT Slide | PDF

A known theoretical model for quantitatively interpreting the EIT phenomenon is the two-oscillator model [35]. The interaction between both oscillators (bright (x1) and quasi-dark (x2)) with the incoming electric field E=E0eiωt can be quantitatively described in the following differential Eqs.:

x¨1(t)+γ1x˙1(t)+ω02x1(t)+Ωx2(t)=gE
x¨2(t)+γ2x˙2(t)+(ω0+δ)x2(t)+Ωx1(t)=0

The parameters (γ1,γ2) and (x1,x2) are the damping and the resonant amplitude of two oscillators, respectively. The parameter g represents the coupling strength between bright mode oscillator and the external field. The coupling between the two oscillators is described by the coupling strength of Ω. A detuning factor δ is introduced to represents the frequency difference between the transparency frequency and the resonance frequency of intrinsic oscillators. After solving the above coupled Eq. (1) and (2) with the displacements vectors expressed asxn=cneiωt(n=1,2), and using the approximation of ω12ω22ω1(ωω1) [29], the transmission as a function of frequency can be expressed as:

T=1Reig2(ωω0δ+iγ2/2)(ωω0+iγ1/2)(ωω0δ+iγ2/2)Ω2/4

Here we use the scattering parameters of an electric current sheet and the relation of T = 1-R [36]. Using the Curve fitting toolbox in MatlabTM, We obtained the following fitting parameters:γ1=4.939,γ2=0.2403,Ω=2.819,δ=0.4626, ω0=12.55. The analytically fitted curve using Eq. (3) is in good agreement with the numerical simulation results as shown in Fig. 4(a), which reflect the validity of the oscillator model. Moreover, the two parameters γ1 and γ2 are of different orders of magnitude, this is because the light-matter coupling extent between the incident RCP light and the two resonators are quite different.

3. Discussions

In a lot of previous metamaterial designs, coupled asymmetry split-ring resonators have been proposed to realize EIT-like narrow transmission resonances for linear polarized incident waves at different wavelengths. To study the effect of symmetry breaking in our design, we first plot the transmission spectrum and simulated current distributions of two symmetric 3D designs which are shown in the insets of Fig. 5(a) and 5(b) separately. In these cases, the metallic vias are drilled at the center of the strips on both sides, the rotation angle θ is set to 90 and 45 separately. Whenθ=90°, the transmission coefficient |TRR| is equal to |TLL| since the structure is symmetric. Whenθ=45°, the structure is in C4 symmetry shape, thus the transmission coefficient |TRR| is slightly different from that of|TLL|. The transmission dips share the same frequency whatever the circular polarization is. From the surface current distributions plot in Fig. 5(c), it can be clearly seen that the surface currents flow along two twisted loop paths in both cases. Different from those shown in the proposed EIT-metamaterial, the surface current loops on the metallic structure introduce two magnetic dipoles which are in phase and with nearly equal strength and therefore result in constructive interference.

 figure: Fig. 5

Fig. 5 (a) and (b) Simulated transmission spectra of two symmetry 3D structure, the inset shows its geometric parameter, respectively; (c) surface current distribution around the resonance frequency 13.07GHz of the structures

Download Full Size | PPT Slide | PDF

The degree of asymmetry of our 3D meta-atoms can be tailored through changing the rotation angle θ as well as the position of the through hole. To understand the influence of different geometry parameters, the simulated amplitude transmission of the proposed design with different rotation angle θ are presented in Fig. 6(a) respectively. It shows that the amplitude of the transmission peak gradually increases with the decrease of the rotation angle ranging from 60to30 under the incidence of RCP light. The frequency of the transmission peak slightly increase with the increase of theθ. These spectral features might be explained by the equivalent circuit model of the EIT metamaterial. As the rotation angle increases, the gap size of each twisted-U shape resonator increase which will result in the decrease of capacitance, since the resonance frequency is decided byf=12πLC, the transmission peak thus experiences a blueshift. In addition, the increased rotation angle also increases the distance between the two magnetic dipoles, and further decreases the coupling strength along with the transparency peak intensity. To study the influence of the through hole’s position, we keep the rotation angle θ fixed to 15 degree and place the through hole at different locations. The transmission responses are shown in Fig. 6(b). It can be observed that the line shape can be engineered from Fano shape to EIT shape with different asymmetry degree. Since the rotation angle remains constant, the current loop path’s directions have not changed. Via’s position only changes the coupling strength between the twisted U shape resonators. The Fano peak’s frequency remains nearly unchanged while its amplitude can be modulated due to the changing of via position. Similar conclusions can also be drawn from the equivalent circuit model depicted in Fig. 4(b).

 figure: Fig. 6

Fig. 6 (a) Simulated transmission spectra with θ varying from 30 to60, (b) Simulated transmission spectra with varying the place of the through vias while fix the rotation angle θ

Download Full Size | PPT Slide | PDF

At last, The EIT-like metamaterials can be used as refractive-index sensors. The sensing ability of our design is depicted in Fig. 7. One can clearly observe a shift of the transmission peak to lower frequency due to the change of background permittivity. The sensor may provide wide usage in environmental, chemical and other practical application areas.

 figure: Fig. 7

Fig. 7 Simulated resonance shift of the EIT-like metamaterial with respect to the change in the relative permittivity of the back medium

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we have numerically and experimentally verified a novel three dimensional metamaterial structure that support classical analogy of electromagnetically induced transparency and slow light behavior for circular polarized waves. The unique spectral features rely on the introduction of symmetry breaking into chiral metamaterials, which provide more resonance modes for the structure, such as constructive asymmetric mode, destructive asymmetric mode and symmetric mode, exist at transmission dips and transparency frequencies respectively. The coupling between hybridized dipoles can be understood in terms of the coupled oscillator model and an equivalent circuit model. Further, the EIT response can be tailored through changing the degree of asymmetry. These rich spectral features are benefit from the three dimensional meta-atom design in which the through hole reconstructs the resonance current distributions and magnetic/electric dipole’s direction may be rearranged to provide more resonance patterns. The design concept may also be extended to THz and optical spectral. It will lead the application of metamaterials to multifunctional devices, such as optical switches, frequency selective devices, optical modulators, and ultrasensitive sensors and slow-light devices [37,38].

Funding

The Fundamental Research Funds for Central Universities (No.CCNU16A0216); National Natural Science Foundation of China (No. 41474117); Open Funds from Key Laboratory of Cognitive Radio and Information Processing of Ministry of Education in Guilin University of Electronic Technology (No. CRKL 160204).

References and links

1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef]   [PubMed]  

2. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014). [CrossRef]   [PubMed]  

3. L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic wave with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016). [CrossRef]  

4. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion: Free terahertz metadevice with Pancharatnam Berry phase enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015). [CrossRef]   [PubMed]  

5. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef]   [PubMed]  

6. M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016). [CrossRef]  

7. N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013). [CrossRef]  

8. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17(5), 3826–3834 (2009). [CrossRef]   [PubMed]  

9. P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015). [CrossRef]   [PubMed]  

10. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012). [CrossRef]   [PubMed]  

11. A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247–264 (2013). [CrossRef]  

12. G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013). [CrossRef]   [PubMed]  

13. A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015). [CrossRef]  

14. M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015). [CrossRef]  

15. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010). [CrossRef]   [PubMed]  

16. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009). [CrossRef]  

17. T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87(16), 97–101 (2013). [CrossRef]  

18. F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012). [CrossRef]  

19. N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano-Lorentzian metasurfaces: a classical analog of a four‐level tripod quantum system,” Adv. Opt. Mater. 4(8), published online (2016). [CrossRef]  

20. S. Hu, H. Yang, S. Han, X. Huang, and B. Xiao, “Tailoring dual-band electromagnetically induced transparency in planar metamaterials,” J. Appl. Phys. 117(4), 043107 (2015). [CrossRef]  

21. M. P. Hokmabadi, J. H. Kim, E. Rivera, P. Kung, and S. M. Kim, “Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator,” Sci. Rep. 5, 14373 (2015). [CrossRef]   [PubMed]  

22. T. Matsui, M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Electromagnetic tuning of resonant transmission in magnetoelastic metamaterials,” Appl. Phys. Lett. 104(16), 161117 (2014). [CrossRef]  

23. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009). [CrossRef]   [PubMed]  

24. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012). [CrossRef]  

25. M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014). [CrossRef]  

26. W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014). [CrossRef]  

27. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012). [CrossRef]  

28. L. Kang, Z. Hao Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015). [CrossRef]   [PubMed]  

29. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef]   [PubMed]  

30. S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016). [CrossRef]   [PubMed]  

31. S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016). [CrossRef]  

32. Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013). [CrossRef]  

33. A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016). [CrossRef]   [PubMed]  

34. J. Harden, A. Joshi, and J. D. Serna, “Demonstration of double EIT using coupled harmonic oscillators and RLC circuits,” Eur. J. Phys. 32(2), 541–558 (2011). [CrossRef]  

35. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012). [CrossRef]   [PubMed]  

36. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009). [CrossRef]   [PubMed]  

37. M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015). [CrossRef]  

38. R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 3(6), 820–826 (2013). [CrossRef]  

References

  • View by:

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
    [Crossref] [PubMed]
  3. L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic wave with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
    [Crossref]
  4. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion: Free terahertz metadevice with Pancharatnam Berry phase enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
    [Crossref] [PubMed]
  5. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  6. M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
    [Crossref]
  7. N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
    [Crossref]
  8. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17(5), 3826–3834 (2009).
    [Crossref] [PubMed]
  9. P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
    [Crossref] [PubMed]
  10. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
    [Crossref] [PubMed]
  11. A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247–264 (2013).
    [Crossref]
  12. G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
    [Crossref] [PubMed]
  13. A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
    [Crossref]
  14. M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
    [Crossref]
  15. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
    [Crossref] [PubMed]
  16. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
    [Crossref]
  17. T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87(16), 97–101 (2013).
    [Crossref]
  18. F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
    [Crossref]
  19. N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano-Lorentzian metasurfaces: a classical analog of a four‐level tripod quantum system,” Adv. Opt. Mater. 4(8), published online (2016).
    [Crossref]
  20. S. Hu, H. Yang, S. Han, X. Huang, and B. Xiao, “Tailoring dual-band electromagnetically induced transparency in planar metamaterials,” J. Appl. Phys. 117(4), 043107 (2015).
    [Crossref]
  21. M. P. Hokmabadi, J. H. Kim, E. Rivera, P. Kung, and S. M. Kim, “Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator,” Sci. Rep. 5, 14373 (2015).
    [Crossref] [PubMed]
  22. T. Matsui, M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Electromagnetic tuning of resonant transmission in magnetoelastic metamaterials,” Appl. Phys. Lett. 104(16), 161117 (2014).
    [Crossref]
  23. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  24. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
    [Crossref]
  25. M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
    [Crossref]
  26. W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
    [Crossref]
  27. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
    [Crossref]
  28. L. Kang, Z. Hao Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
    [Crossref] [PubMed]
  29. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  30. S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
    [Crossref] [PubMed]
  31. S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
    [Crossref]
  32. Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
    [Crossref]
  33. A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
    [Crossref] [PubMed]
  34. J. Harden, A. Joshi, and J. D. Serna, “Demonstration of double EIT using coupled harmonic oscillators and RLC circuits,” Eur. J. Phys. 32(2), 541–558 (2011).
    [Crossref]
  35. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref] [PubMed]
  36. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [Crossref] [PubMed]
  37. M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
    [Crossref]
  38. R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 3(6), 820–826 (2013).
    [Crossref]

2016 (5)

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic wave with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

2015 (8)

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

S. Hu, H. Yang, S. Han, X. Huang, and B. Xiao, “Tailoring dual-band electromagnetically induced transparency in planar metamaterials,” J. Appl. Phys. 117(4), 043107 (2015).
[Crossref]

M. P. Hokmabadi, J. H. Kim, E. Rivera, P. Kung, and S. M. Kim, “Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator,” Sci. Rep. 5, 14373 (2015).
[Crossref] [PubMed]

L. Kang, Z. Hao Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref] [PubMed]

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion: Free terahertz metadevice with Pancharatnam Berry phase enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

2014 (4)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

T. Matsui, M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Electromagnetic tuning of resonant transmission in magnetoelastic metamaterials,” Appl. Phys. Lett. 104(16), 161117 (2014).
[Crossref]

2013 (5)

R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 3(6), 820–826 (2013).
[Crossref]

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247–264 (2013).
[Crossref]

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87(16), 97–101 (2013).
[Crossref]

2012 (5)

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

2011 (1)

J. Harden, A. Joshi, and J. D. Serna, “Demonstration of double EIT using coupled harmonic oscillators and RLC circuits,” Eur. J. Phys. 32(2), 541–558 (2011).
[Crossref]

2010 (1)

2009 (6)

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17(5), 3826–3834 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

2006 (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

Alici, K. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Al-Naib, I.

R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 3(6), 820–826 (2013).
[Crossref]

Aoust, G.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

Arju, N.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Atwater, H. A.

Aydin, K.

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Belkin, M. A.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Belov, P. A.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

Bettiol, A. A.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Bitzer, A.

Blanchard, R.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

Cao, W.

R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 3(6), 820–826 (2013).
[Crossref]

Capasso, F.

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

Cheah, K. W.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

Chen, M. L. N.

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

Chen, S.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Chiam, S. Y.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Cong, L.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion: Free terahertz metadevice with Pancharatnam Berry phase enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Dabidian, N.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Dong, J.

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Erni, D.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Fan, Z.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Feng, Y.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Feurer, T.

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Gao, F.

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

Genevet, P.

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Ginzburg, P.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

Guo, L.

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Han, J.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion: Free terahertz metadevice with Pancharatnam Berry phase enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

Han, S.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

S. Hu, H. Yang, S. Han, X. Huang, and B. Xiao, “Tailoring dual-band electromagnetically induced transparency in planar metamaterials,” J. Appl. Phys. 117(4), 043107 (2015).
[Crossref]

Hao Jiang, Z.

L. Kang, Z. Hao Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref] [PubMed]

Harden, J.

J. Harden, A. Joshi, and J. D. Serna, “Demonstration of double EIT using coupled harmonic oscillators and RLC circuits,” Eur. J. Phys. 32(2), 541–558 (2011).
[Crossref]

Helm, H.

Hillenbrand, R.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Hokmabadi, M. P.

M. P. Hokmabadi, J. H. Kim, E. Rivera, P. Kung, and S. M. Kim, “Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator,” Sci. Rep. 5, 14373 (2015).
[Crossref] [PubMed]

Hu, S.

S. Hu, H. Yang, S. Han, X. Huang, and B. Xiao, “Tailoring dual-band electromagnetically induced transparency in planar metamaterials,” J. Appl. Phys. 117(4), 043107 (2015).
[Crossref]

Huang, C.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Huang, K.

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic wave with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Huang, X.

S. Hu, H. Yang, S. Han, X. Huang, and B. Xiao, “Tailoring dual-band electromagnetically induced transparency in planar metamaterials,” J. Appl. Phys. 117(4), 043107 (2015).
[Crossref]

Iorsh, I.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Jiang, L. J.

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

Jiang, T.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Joshi, A.

J. Harden, A. Joshi, and J. D. Serna, “Demonstration of double EIT using coupled harmonic oscillators and RLC circuits,” Eur. J. Phys. 32(2), 541–558 (2011).
[Crossref]

Kang, L.

L. Kang, Z. Hao Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref] [PubMed]

Kang, M.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

Kenney, M.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247–264 (2013).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Kim, J. H.

M. P. Hokmabadi, J. H. Kim, E. Rivera, P. Kung, and S. M. Kim, “Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator,” Sci. Rep. 5, 14373 (2015).
[Crossref] [PubMed]

Kim, S. M.

M. P. Hokmabadi, J. H. Kim, E. Rivera, P. Kung, and S. M. Kim, “Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator,” Sci. Rep. 5, 14373 (2015).
[Crossref] [PubMed]

Kitano, M.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87(16), 97–101 (2013).
[Crossref]

Kivshar, Y. S.

T. Matsui, M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Electromagnetic tuning of resonant transmission in magnetoelastic metamaterials,” Appl. Phys. Lett. 104(16), 161117 (2014).
[Crossref]

Koch, M.

R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 3(6), 820–826 (2013).
[Crossref]

Koschny, T.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Krasavin, A. V.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

Kung, P.

M. P. Hokmabadi, J. H. Kim, E. Rivera, P. Kung, and S. M. Kim, “Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator,” Sci. Rep. 5, 14373 (2015).
[Crossref] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Lee, J.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Lee, J. C.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Li, G.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Li, J.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, M.

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Li, Z.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
[Crossref]

Lin, H.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, L.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Liu, M.

T. Matsui, M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Electromagnetic tuning of resonant transmission in magnetoelastic metamaterials,” Appl. Phys. Lett. 104(16), 161117 (2014).
[Crossref]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

Lu, F.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

Manjappa, M.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Matsui, T.

T. Matsui, M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Electromagnetic tuning of resonant transmission in magnetoelastic metamaterials,” Appl. Phys. Lett. 104(16), 161117 (2014).
[Crossref]

Mei, S.

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic wave with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Meng, F. Y.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Merbold, H.

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Mutlu, M.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
[Crossref]

Nakanishi, T.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87(16), 97–101 (2013).
[Crossref]

Otani, T.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87(16), 97–101 (2013).
[Crossref]

Ouyang, C.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Ozbay, E.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
[Crossref]

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Podolskiy, V. A.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

Powell, D. A.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

T. Matsui, M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Electromagnetic tuning of resonant transmission in magnetoelastic metamaterials,” Appl. Phys. Lett. 104(16), 161117 (2014).
[Crossref]

Premaratne, M.

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

Pryce, I. M.

Pun, E. Y.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Purtseladze, D.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Qiu, C. W.

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic wave with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rivera, E.

M. P. Hokmabadi, J. H. Kim, E. Rivera, P. Kung, and S. M. Kim, “Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator,” Sci. Rep. 5, 14373 (2015).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 3(6), 820–826 (2013).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Rukhlenko, I. D.

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sarriugarte, P.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Schnell, M.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Segovia, P.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

Serna, J. D.

J. Harden, A. Joshi, and J. D. Serna, “Demonstration of double EIT using coupled harmonic oscillators and RLC circuits,” Eur. J. Phys. 32(2), 541–558 (2011).
[Crossref]

Sha, W. E. I.

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

Shadrivov, I. V.

T. Matsui, M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Electromagnetic tuning of resonant transmission in magnetoelastic metamaterials,” Appl. Phys. Lett. 104(16), 161117 (2014).
[Crossref]

Shalin, A. S.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

Shi, Y.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Shvets, G.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247–264 (2013).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Singh, R.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion: Free terahertz metadevice with Pancharatnam Berry phase enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 3(6), 820–826 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Slobozhanyuk, A. P.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Su, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Tamayama, Y.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87(16), 97–101 (2013).
[Crossref]

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Thoman, A.

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Walther, M.

Wang, Z.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Werner, D. H.

L. Kang, Z. Hao Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref] [PubMed]

Wu, C.

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247–264 (2013).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Wu, K.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Wu, Q.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Wurtz, G. A.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

Xiao, B.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

S. Hu, H. Yang, S. Han, X. Huang, and B. Xiao, “Tailoring dual-band electromagnetically induced transparency in planar metamaterials,” J. Appl. Phys. 117(4), 043107 (2015).
[Crossref]

Xiao, F.

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

Xu, N.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion: Free terahertz metadevice with Pancharatnam Berry phase enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Yang, H.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

S. Hu, H. Yang, S. Han, X. Huang, and B. Xiao, “Tailoring dual-band electromagnetically induced transparency in planar metamaterials,” J. Appl. Phys. 117(4), 043107 (2015).
[Crossref]

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Yu, N.

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

Yue, T.

L. Kang, Z. Hao Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref] [PubMed]

Zayats, A. V.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

Zhang, L.

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic wave with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Zhang, S.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion: Free terahertz metadevice with Pancharatnam Berry phase enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 3(6), 820–826 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhao, J.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Zhao, R.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

Adv. Mater. (2)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion: Free terahertz metadevice with Pancharatnam Berry phase enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic wave with Metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Ann. Phys. (1)

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

Appl. Phys. Lett. (3)

T. Matsui, M. Liu, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Electromagnetic tuning of resonant transmission in magnetoelastic metamaterials,” Appl. Phys. Lett. 104(16), 161117 (2014).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Eur. J. Phys. (1)

J. Harden, A. Joshi, and J. D. Serna, “Demonstration of double EIT using coupled harmonic oscillators and RLC circuits,” Eur. J. Phys. 32(2), 541–558 (2011).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quant. 19(3), 4700423 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 3(6), 820–826 (2013).
[Crossref]

J. Appl. Phys. (3)

S. Hu, H. Yang, S. Han, X. Huang, and B. Xiao, “Tailoring dual-band electromagnetically induced transparency in planar metamaterials,” J. Appl. Phys. 117(4), 043107 (2015).
[Crossref]

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. Li, L. Guo, J. Dong, and H. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Nano Lett. (1)

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2(4), 247–264 (2013).
[Crossref]

Nat. Commun. (2)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(4), 1151 (2012).
[Crossref] [PubMed]

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Opt. Express (2)

Phys. Rev. B (4)

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B 87(16), 97–101 (2013).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92(19), 195127 (2015).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Phys. Rev. Lett. (3)

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref] [PubMed]

Sci. Rep. (3)

L. Kang, Z. Hao Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref] [PubMed]

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

M. P. Hokmabadi, J. H. Kim, E. Rivera, P. Kung, and S. M. Kim, “Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator,” Sci. Rep. 5, 14373 (2015).
[Crossref] [PubMed]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Other (2)

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano-Lorentzian metasurfaces: a classical analog of a four‐level tripod quantum system,” Adv. Opt. Mater. 4(8), published online (2016).
[Crossref]

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15(2), 023001 (2013).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the EIT-like metamaterial under circular polarization wave incidence; (b) top panel photograph of the fabricated sample, (c) bottom panel photograph of the fabricated sample.
Fig. 2
Fig. 2 (a) and (b) Simulated and measured transmission spectra of EIT-like metamaterial under RCP and LCP incidence; (c) Simulated linear polarization rotation angle and ellipticity angle of the transmitted wave; (d) simulated time-domain pulse before and after transmitting the blank substrate, the EIT-like metamaterial sample, respectively.
Fig. 3
Fig. 3 (a), (c) and (e) surface current distribution under LCP illumination at 10.77GHz, 11.7GHz and 13.85GHz respectively; (b), (d) and (f) surface current distribution under RCP illumination at 10.7GHz, 11.7GHz and 13.85GHz respectively
Fig. 4
Fig. 4 (a) Comparison between the simulated transmission spectra and the analytically calculated spectra based on two particle model. (b) An electric circuit analogy model for the 3D chiral metamaterial
Fig. 5
Fig. 5 (a) and (b) Simulated transmission spectra of two symmetry 3D structure, the inset shows its geometric parameter, respectively; (c) surface current distribution around the resonance frequency 13.07GHz of the structures
Fig. 6
Fig. 6 (a) Simulated transmission spectra with θ varying from 30 to 60 , (b) Simulated transmission spectra with varying the place of the through vias while fix the rotation angle θ
Fig. 7
Fig. 7 Simulated resonance shift of the EIT-like metamaterial with respect to the change in the relative permittivity of the back medium

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x ¨ 1 (t)+ γ 1 x ˙ 1 (t)+ ω 0 2 x 1 (t)+Ω x 2 (t)=gE
x ¨ 2 (t)+ γ 2 x ˙ 2 (t)+( ω 0 +δ) x 2 (t)+Ω x 1 (t)=0
T = 1 Re i g 2 ( ω ω 0 δ + i γ 2 / 2 ) ( ω ω 0 + i γ 1 / 2 ) ( ω ω 0 δ + i γ 2 / 2 ) Ω 2 / 4

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved