Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Open-path cavity ring-down spectroscopy for trace gas measurements in ambient air

Open Access Open Access

Abstract

Abstract: The present work used a near-infrared methane cavity ring-down spectroscopy (CRDS) sensor to examine performance and limitations of open-path CRDS for atmospheric measurements. A simple purge-enclosure was developed to maintain high mirror reflectivity and allowed >100 hours of operation with mirror reflectivity above 0.99996. We characterized effects of aerosols on ring-down decay signals and found the dominant effect to be fluctuations by large super-micron particles. Simple software filtering approaches were developed to combat these fluctuations allowing noise-equivalent sensitivity of ~6x10−10 cm−1HJ Hz-1/2 within a factor of ~3 of closed-path systems (based on stability of the absorption baseline). Sensor measurements were validated against known methane concentrations in a closed-path configuration, while open-path validation was performed by side-by-side comparison with a commercial closed-path system.

© 2016 Optical Society of America

1. Introduction

Atmospheric trace gas measurements are becoming increasingly important in light of global concerns over climate change and air pollution, and the need to better understand atmospheric chemistry. Laser based sensors for species concentration measurements are particularly attractive since they can be very sensitive, selective (free from interferences), and can provide versatile and compact instruments. Techniques based on absorption spectroscopy, such as tunable diode laser absorption spectroscopy (TDLAS), wavelength modulation spectroscopy (WMS), and cavity ring-down spectroscopy (CRDS), are often used owing to their directly quantitative nature for concentration measurements.

CRDS tends to provide the highest sensitivity in terms of absorption based instruments with noise equivalent absorption limits of ~10−9 - 10−11 cm−1 Hz-1/2 allowing detection of atmospheric species at mixing ratios as low as parts-per-billion, or even parts-per-trillion, depending on the target species and details of the optical scheme [1–3]. The technique was first developed in 1988 to study optical coating loss [4]. CRDS instruments, along with those based on related cavity enhanced techniques such as integrated cavity output spectroscopy (ICOS) and cavity enhanced absorption spectroscopy (CEAS), are seeing growing use for atmospheric measurements [5–7]. The cavity enhanced approaches employ high finesse optical cavities, typically formed from two or three high-reflectivity (HR) mirrors with reflectivity, R, often as high as ~0.9999-0.99999, to provide enhanced effective optical path-lengths (~104-105 x the cavity length). The combination of long effective path length and, in the case of CRDS, insensitivity to laser power fluctuations (since a temporal decay is measured) results in ultra-high sensitivity. Atmospheric science research is being conducted with both commercial and custom instruments to measure a multitude of species for example oxides of nitrogen [8,9], greenhouse gases such as CO2 and CH4 [10,11], and optical properties of aerosol particles [12–15].

The vast majority of CRDS instruments used in atmospheric science employ closed-path flow cells. A vacuum pump pulls the air sample through the flow cell between the HR mirrors. The closed-path flow cell architecture is used for several reasons. The first is to maintain high mirror reflectivity by using a weak purge flow of zero-air (or an inert gas) near the mirror HR surfaces to provide a buffer against potentially contaminating sample constituents. The second is to lower the sample pressure, typically to ~0.1 atm, to narrow the spectral lines (also reducing their overlap), as well as to fix both the pressure and temperature which must be known to extract the sample mixing ratio. Finally, and less frequently discussed in the literature, is that the closed-cell configuration allows use of particulate filters or virtual impactors to prevent ambient aerosol particles from entering the optical cavity, thus reducing signal fluctuations due to particle optical extinction.

As discussed herein, open-path CRDS operation introduces challenges in connection with optical extinction of the aerosols. Mitigating the effects of particle optical extinction in open-path measurements of ambient air is one of the motivations of the present work. The total optical extinction of aerosols is due to both absorption and scattering, and depends on the size distribution, complex index-of-refraction, and morphology of the particles. While these effects can be problematic for open-path instruments seeking to measure gas-phase species, they are enabling for CRDS instruments specifically designed to measure aerosol extinction, number density, or optical properties [12,16,17]. Effects of particle extinction in gas-phase CRDS have been noted by several researchers [18–22]. Romanini et al. noted a baseline difference in measurements between open air and evacuated cell, due to the scattering by submicron dust particles, which contributed a spectrally flat absorption. Morville et al. noted reductions in ring-down times, often over several consecutive ring-down acquisitions, due to large aerosol particles crossing the beam path. The relationship of these studies to the present investigation is further discussed in Section 3.2.

The overall goal of the present work is to examine the performance and limitations of open-path CRDS to guide development of future trace gas sensors for atmospheric monitoring. Open-path configurations can provide several important advantages for practical sensor operation. Removing the pump and flow cell can dramatically reduce the size, mass, and power draw of CRDS instruments, for example from ~27 kg and ~250 W for typical commercial instruments [23] to ~3 kg and ~30 W, based on the opto-electronic components of our sensor designs. Smaller and less power hungry sensors have potential for more remote deployment, for example where only solar-cell power is available or on small unmanned aerial systems (UAS). Applications for such sensors include study of near field methane emission plumes from oil and gas operations [24–27]. Removing the flow inlet also increases the accuracy and time-response for measurements of “sticky gases” such as NH3 or HCl for which inlet adsorption and memory effects can be severe [28]. Finally, the temporal response of open-path instruments can more faithfully reflect the ambient conditions, rather than being limited by lag and cell transit times of the flow system.

Only limited work is available in the literature on the use for open-path CRDS instruments for ambient air. He et al. [29] described development of an open-path system for measurements of NH3, but did not provide detailed sensitivity characterizations or extensive discussion of aerosol effects. Wada [30] and Bitter [31] employed open-path CRDS for measurement of sticky marine gases, but either assume aerosol influence is below noise level [30] or assume aerosols provide a linear offset which can be subtracted [31]. Recently an open-path CRDS sensor was developed for measurements of aerosol extinction [32], using the open-path cell configuration to measure humid particles. Other past work with open-path CRDS, for example for combustion flames [33,34] or atmospheric plasmas [35], has employed less sensitive pulsed laser setups where effects of particle extinction or mirror degradation are much diminished.

The remainder of the paper is laid out as follows. Section 2 describes the layout and operation of the open-path CRDS sensor, including simulations of the scan region and the synthetic spectrum used to fit data and recover concentrations. Section 3 contains results of the experimental studies including findings on maintaining mirror reflectivity, effects of optical extinction of aerosols and software filters to negate the noise introduced, sensitivity studies, and validation measurements with a side-by-side comparison against a commercial closed-path sensor. Finally, Section 4 provides conclusions and discussion of future work.

2. Instrument description

2.1 Sensor design

We use a near-infrared (NIR) methane instrument for the present open-path CRDS studies. The instrument, shown in Fig. 1, uses a similar design to a closed-path hydrogen chloride sensor at 1742 nm that was previously developed in our lab [36]. The sensor has now been modified by removing the flow cell, pump, and the N2 purge flow for the HR mirrors as well as some changes to the exact laser scan region and parameters. The present NIR sensor allows methane detection and examination of open-path operation, though other wavelengths (laser sources) would better optimize sensitivity to methane. The main elements of the instrument are described below and more detail can be found in our past work [36]. The sensor uses a distributed-feedback (DFB) diode laser (NEL Laser, KELD1F5DAAA) in a 14-pin butterfly package with a center wavelength at 1742 nm, linewidth of a few MHz, and output power of 13mW through a single-mode fiber pigtail. Laser scan parameters can be varied but typical values are a scan extent of 14.4 GHz at a rate of 28.8 GHz/s which corresponds to 172 Free Spectral Ranges (FSRs) /second for our optical cavity. An acousto-optic modulator (IntaAction ACM-402AAI) is the last element before the cavity. An extended wavelength InGaAs photodiode detector (G8421-03, Hamamatsu) with transimpedance amplifier (Analog Modules, 341-4) is used to detect the light signals. We use a simple non-locked CRDS scheme where the laser is continually scanned across the target spectral region and ring-down signals are collected when the laser passes over cavity resonances, ie. fundamental TEM00 modes [37]. When the signal measured by the photodiode exceeds a set threshold trigger value, the software turns off the AOM to extinguish the light (1st order) to the cavity, producing a ring-down signal which is fit by an iterative nonlinear least squares method [38]. The ring-down times are converted to optical absorption using standard methods [36] and the relative-frequency axis is set via etalon calibration. Our actual ingestion is roughly ~150 ring-down measurements per second and is limited by details of the LABVIEW code (i.e. a small fraction of cavity resonances are missed by the DAQ system due to computational latency). The high-finesse optical cavity is composed of two HR dielectric mirrors (Advanced Thin Films) with reflectivity determined to be R = 0.99996-0.99998 (depending on cleanliness) and separation of 90 cm (FSR = 166 MHz). To prevent ambient vapors or particles from contaminating the HR mirror surfaces, a purge system pulls filtered ambient air into a small positive pressure enclosure at each cavity mirror using a small diaphragm pump (CTS Micro Diaphragm Pump) and HEPA filter (HC01-5N-B, ETA Filters) – see also Section 3.1. During measurements where closed-path operation is needed, for example for validation studies with cylinder gases, a simple cylindrical cell with input/output gas flow is affixed between the mirrors.

 figure: Fig. 1

Fig. 1 Schematic of open-path CRDS instrument.

Download Full Size | PPT Slide | PDF

2.2 Spectral simulations and fitting method

Figure 2 shows a spectral simulation of the measurement region used by the CRDS sensor which targets a pair of nearby methane absorption lines at ~5739.69 cm−1 and ~5739.85 cm−1. Conditions are given in the caption and are for typical ambient operation in Colorado at ground level. Owing to the relatively high pressure (0.84 atm), the peaks are broadened and overlap one another (cf. closed-cell operation at ~0.1 atm where the peaks would be ~4 times narrower). The simulations use parameters from HITRAN 2012 [39] and consider lines of all atmospheric species in the region to determine which lines must be included to accurately model methane in the laser scan region of ~5739.51 – 5739.99 cm−1. For these conditions we find the difference between Voigt and Lorentzian lineshapes to be negligible, so we use the simpler Lorentzians for all simulations and fits.

 figure: Fig. 2

Fig. 2 Simulated absorption spectra in the vicinity of the targeted CH4 lines. Simulated conditions are: CH4 = 1.8 ppmv, H2O = 0.013 (50% Relative Humidity), T = 298 K, P = 0.84 atm (atmospheric pressure in Colorado).

Download Full Size | PPT Slide | PDF

Due to the wings of nearby lines, the following features are included in our synthetic fitting spectrum: methane peaks located at 5739.69, 5739.85, 5740.15, and 5740.46 cm−1 (the first two being the features whose centers are scanned by the laser), and water peaks located at 5732.47, 5741.13, 5741.66, and 5742.90 cm−1. Mixing ratio is determined by recording a spectrum of ring-down times versus (relative) laser frequency, τ(ν), and converting to per-pass loss (including absorption), k(ν), via k = 1/cτ, where c is the speed of light. The measured absorption spectrum is fit with a synthetic spectrum based on the aforementioned lines:

k(ν)=b+i=18ϕL(ν,ν0i,Δνi)PSini
where b is the cavity baseline loss (units of cm−1), i is an index to sum over the 8 lines used, ϕL are frequency-normalized Lorentzian lineshapes with center frequency ν0i and width Δνi determined from HITRAN parameters (units of cm−1), P is the pressure (units of atm), Si the linestrength (expressed in units of cm−2atm−1), and ni the species concentration (in units of cm−3). The fit has 4 free parameters: the baseline loss (nominally (1-R)/L, where L is the cavity length, but also accounts for additional baseline shifts), a frequency offset (as the experiment uses relative frequency), methane concentration, and water concentration. The suitability of the synthetic spectrum was confirmed by fitting a full simulated spectrum (i.e. with all spectral lines from all species at typical ambient conditions) using the synthetic spectrum, and finding we can recover the starting mixing ratios. Determination of mixing ratios also requires accurate knowledge of temperature and pressure owing to the dependence of the linestrengths on temperature, linewidths on pressure, and dependence of total gas density on both. Initial measurements have been conducted at relatively stable ambient conditions where we have taken time average values for these parameters, but future instruments will use real time temperature and pressure measurements which will be logged and incorporated into the spectral analysis. The impact of these measurements on sensor performance will be a subject of future study but, for example, measuring temperature and pressure to error of ~0.1%, would correspond to an error in methane concentration of ~3 ppbv for typical ambient conditions, below the current measurement uncertainty.

3. Results and discussion

A series of experiments were conducted to demonstrate sensor performance, with emphasis on effects of open-path operation. Section 3.1 discusses the effectiveness of the purge system for maintaining high mirror reflectivity, Section 3.2 considers effects of ambient aerosols on measurements, and software filtering approaches to mitigate impacts on sensitivity, Section 3.3 presents Allan deviation studies to investigate the open-path sensor sensitivity, and Section 3.4 presents validation studies against known methane concentrations along with a side-by-side comparison against a commercial closed-path instrument.

3.1 Mirror reflectivity

A challenge of open-path CRDS operation is degradation of mirror reflectivity due to contamination from atmospheric vapors or particles that may come into contact with the HR mirror surfaces. In an effort to mitigate such effects, we use a simple and compact enclosure near each HR mirror within which a small volume of clean air buffers the surface against the ambient air due to a small positive pressure. The purge gas is provided by pulling ambient air thorough a HEPA filter using a small diaphragm pump at 0.4 sccm. The sub-system needs no external gas supply and has mass of less than 50 g with power-draw of 1.8 W, giving minimal impact on the overall sensor mass and power. In closed-path systems [5,35], one typically needs to account for the reduction in the sample path length due to the purge flows by using an effective path length. In our case, because the purge uses a weak flow of ambient air containing the analyte species such corrections are not needed. This was experimentally confirmed by comparing measured methane concentrations with and without the purge flow and seeing negligible changes within experimental uncertainty.

The capability of the ambient purge scheme was assessed by several tests including the introduction of high aerosol concentrations (generated by smoking candles) into the optical cavity to simulate extreme outdoor conditions. The aerosol loading was sufficient to cause significant reductions in ring-down times, but after the aerosols dissipated the ring-down times recovered to their earlier value indicating no appreciable change in mirror reflectivity. Longer duration tests of open-path operation were performed in the laboratory, containing nearby vacuum pumps, exhaust, and sooty combustion burners, and outdoors in Fort Collins, CO within 50 meters of a heavily used street. The tests comprised more than 100 hours of operation and showed the purge enclosure maintained R>0.99996 with no noticeable reduction.

3.2 Effects of aerosols on ring-down time measurements

Ring-down signals for open-path CRDS can be influenced by optical extinction of ambient aerosols (see also Section 1). The total light extinction of aerosols, αext, can be found from the size distribution as:

αext=N(Dp)σext(Dp)dDp
where N is the number of particles per unit volume with mean diameter Dp and σext is the corresponding extinction cross section. Equation (2) assumes a single species of aerosol composition; if different compositions are present then the contributions from each should be separately found and added. Petersson et al. [12] considered the optical extinction for three different aerosol distributions corresponding to a range of clean and polluted air cases and found extinction coefficients in the range of ~10−8-10−7 cm−1 (for 532 nm light). These levels of extinction are readily detected by our CRDS instrument. Petersson et al. also discuss how, even for a fixed size distribution, statistical variations of the number of particles within the cavity beam lead to fluctuations in the ring-down times. The fluctuations are dominated by stochastic variation in the number of large particles (~1-10 μm diameter) present in the beam volume [21,22]. He et al. ascribed some of the noise in their signal to large aerosol particles crossing their beam path but did not elaborate on this aspect.

Effects of aerosol extinction can be further understood from Fig. 3 which shows histograms of CRDS absorption measurements obtained from single-shot ring-down acquisitions for zero-air in a closed-cell configuration and open-path measurements from laboratory air. Measurements were taken by scanning the laser over a narrow region (~1 FSR) at 5739.26 cm−1 selected to be away from absorption line peaks. For the zero-air case, the histogram is well described by a Gaussian whose width is indicative of the measurement spread of the laser sensor, i.e. effects of detector noise, fitting error, laser phase noise etc. The open-path distribution can be considered as the sum of a similar Gaussian plus a high absorption tail due to temporally fluctuating aerosols in the beam. The center location of the Gaussian for the open-path case is different than for zero air, attributed to a combination of weak absorption from the spectral wings of nearby water lines (see Section 2.2) as well as from small particles (diameter <~1 μm) that are present with relatively stable numbers within the cavity beam. The higher absorption tail reflects the light extinction of larger particles (diameter >~1 μm) that provide stronger absorption and are present with fluctuating (small) numbers inside the beam [12]. As a numeric example, 10 μm particles may have density of ~0.1 cm−3 and cross-section of ~3x10−6 cm2 giving (statistically varying) absorption coefficient of order 3x10−7 cm−1. Comparison of the areas below the Gaussian and tail components of the open-path histogram shows that approximately 60% of the ring-down acquisitions are influenced by the fluctuating super-micron aerosols. Open-air histograms obtained from different measurements change somewhat due to varying particle loading, but the distribution shown in Fig. 3 is reasonably representative for several cases we have studied within our laboratory at Colorado State University and outdoor air on the roof of the same laboratory located approximately 50 m from a major urban road.

 figure: Fig. 3

Fig. 3 Histogram of CRDS absorption measurements for closed-cell measurement of zero air with no particles and open-path measurement of ambient laboratory air. Arrow indicates range of points within 50%, ± 0.7x10−8 cm−1 filter. See text.

Download Full Size | PPT Slide | PDF

3.3 Sensor precision

An Allan deviation study of the absorption measurements was performed to characterize sensor precision. Figure 4 shows results of the study using the modified method outlined by Huang and Lehmann [40]. The laser frequency was scanned over a narrow region at 5739.26 cm−1, selected to be representative of the absorption baseline. Results are shown for three cases: closed-path with ultra-pure zero-air, ambient air measured open-path in our lab (particles present), and the ambient case but with application of a software filter described below (frequency bin method). As expected, closed-path gives the best stability with the lowest Allan deviations with a noise equivalent absorption of 2.4x10−10 cm−1 Hz-1/2 (based on Allan deviation at 1 s) which compares favorably to other non-locked, near-infrared CRDS instruments [3,37]. Increased signal fluctuations for open-path operation without software filtering degrade the deviation by a factor of ~30. Applying a software filter provides substantial improvement, yielding Allan deviations within a factor of 3 relative to the zero-air case for most time durations corresponding to ~6.0x10−10 cm−1Hz-1/2. Although the filter rejects some ring-down measurements, thereby decreasing the number of ring-downs for a given duration, the dominant effect is to decrease the deviation due to the smaller spread in the preserved data. Scaling by the dependence of the peak absorption on concentration, the filtered Allan deviation yields a theoretical detection limit of ~50 ppbv methane for the specific NIR lines used (use of stronger NIR or mid-infrared lines would improve the concentration limit). For Fig. 4, the frequency bin filter uses a tolerance of 0.7x10−8 cm−1 and 50% of points in a bin for mode determination (see Section 3.4.1). Varying the tolerance by an overall factor of 8, between 0.35x10−8 – 2.8x10−8 cm−1, and/or varying the mode determination percentage between 25 and 75%, gives an Allan deviation at 1 second that remains within a factor of 2 of the plotted case.

 figure: Fig. 4

Fig. 4 Allan deviation of absorption values for closed-path (zero-air), open-path ambient air, and open-path ambient air with software filter.

Download Full Size | PPT Slide | PDF

3.4 Methane concentration measurements

3.4.1 Spectral fitting methods in presence of aerosols

Figure 5 shows raw optical loss data (red points) for open-path CRDS of ambient air in the laboratory from a series of ring-down signals over approximately 60 seconds. The methane absorption features of Fig. 2 are visible along with noise due to aerosol particles as discussed above. Extracting the methane concentration requires fitting the data with the synthetic spectrum given in Eq. (1).

 figure: Fig. 5

Fig. 5 Methane absorption spectrum of ambient laboratory air measured by open-path CRDS. Raw data shown with red points, data preserved by filter shown with black points, final spectral fit shown with cyan curve. Inset in Fig. 5(a) is more zoomed out to show larger fluctuations. Application of frequency bin filter shown in Fig. 5(a), global iterative filter in Fig. 5(b). The first iterative fit is shown with the dashed cyan curve. Intermediate fits not shown.

Download Full Size | PPT Slide | PDF

The distributions of ring-down times from Fig. 3 suggest possible strategies to filter the data to mitigate the aerosol effects. To make a concentration measurement, the laser frequency is scanned over a range containing the targeted absorption features(s) and a series of ring-down times are obtained. These data are then converted to per-pass loss (using k = 1/cτ) versus laser frequency (Fig. 5). The first filtering method is based upon preserving or rejecting each of the loss values by sequentially considering a series of frequency intervals (“bins”) along the laser frequency axis. Within each bin, the decision to preserve or reject each loss point is based on considering a specified (loss) tolerance and the “mode” of the loss values in the given bin. Because aerosol induced fluctuations cause an increase in loss (absorption), points with loss that exceed the mode by more than the tolerance are rejected, while all other points in the bin are preserved for use in the final concentration spectral fit (Eq. (1)). To determine the mode in a given bin, we again consider that the fluctuations increase the loss, and therefore find the mode using a subset of the loss points having the lowest loss values, for example from a subset comprised of the 50% of the points in the bin with the lowest loss. The mode is then found by rounding the absorptions to 10−9 cm−1 and finding the value that occurs most frequently. (For our data, this method always returns an unambiguous mode, but the method of mode determination could be altered for other experimental setups.) The same tolerance is used for all bins and is set a priori based on the instrumental precision. Our default is to use a tolerance of 0.7x10−8 cm−1 based on the half-width of the Gaussian of the open-path loss histogram (Fig. 3). The preserved points, i.e. those loss points that do not exceed the mode within their given bin by more than the tolerance, match reasonably well with the Gaussian envelope and constitute ~50% of the starting number of points in each bin. The black points in Fig. 5(a) show the data preserved by this frequency bin filter configuration, with the cyan curve being the spectral fit to the preserved points. In this case 42 frequency bins were used – the needed number of bins can be determined by simulation and should be matched to experimental conditions (e.g. 42 bins corresponds to ~2 FSR per bin).

A shortcoming of the frequency bin filter is that it does not consider known information about the overall spectral shape along the frequency axis. Our second filter method iteratively identifies outliers and fits the spectrum in a more global manner. First, all ring-down points are fit with the synthetic spectrum. A tolerance band is again defined for example from the baseline noise or the histogram distribution. Points that are larger than the fit by more than the tolerance are identified as outliers and discarded. The remaining data is re-fitted, and the method is iteratively repeated until a desired degree of convergence is reached or a maximum number of iterations has been reached. Figure 5(b) shows use of the global iterative filter to the same data as was used for the frequency bin filter in Fig. 5(a). In this case the filter used a tolerance of 0.7x10−8 cm−1 and converged after 8 iterations where convergence was defined as standard deviation <0.01 ppm between the last four concentration fit values. The two filter methods were applied to 30 minutes of open-air laboratory data with 5 second increments resulting in consistent mean concentrations of 2.94 ± 0.15 ppm for both the frequency bin and global iterative methods.

Clearly, needed filter parameters will vary with details of the setup, for example laser scan speed, cavity finesse, and time resolution requirements, but we find the filter methods to be relatively robust in terms of exact parameter values. Selection of filter values is also discussed in Sections 3.3 and 3.4.2.

3.4.2 Methane concentration validation data

Sensor accuracy and suitability of the synthetic spectrum were tested by supplying known concentrations of methane gas to the sensor in a closed-path configuration. Ultra-pure zero-air was mixed with methane gas from a reference cylinder and passed through the cell at 0.84 atm and 296 K. Measurement results are shown in Fig. 6 and demonstrate good agreement, within experimental uncertainty, between measured and expected concentrations. Error bars for expected concentrations are due to propagation of the 2% uncertainty in the calibration source and 4% of full scale uncertainty of the flow sensor. Errors bars on the measured concentration are taken as the 2 s standard deviation in the measured values during the 10 min averaging time and are negligibly small on this scale.

 figure: Fig. 6

Fig. 6 Methane concentrations recorded in closed-path configuration.

Download Full Size | PPT Slide | PDF

Delivering known concentrations to the sensor in open-path configuration is experimentally difficult. To validate sensor readings in the open-path configuration, comparison was performed against a commercial CRDS methane sensor (Picarro model G2203 [23]) during a controlled release of methane gas. The setup for the experiment is shown in Fig. 7(a). The two sensors were co-located in large warehouse, partially open to the outdoors, with dimensions ~21 m by ~23 m. The methane was released from a gas cylinder emission source with flow rate < 0.3 g/s positioned ~15 m from the two sensors. Fans were used to blow the methane gas towards the sensors to simulate an outdoor plume. The inlet of the commercial sensor was modified by replacing the single inlet port (6.2 mm inner diameter) with a custom eight-port inlet to more representatively sample along the full length of the 90 cm cavity of our open-path sensor. Figure 7(b) shows data collected by the open-path sensor and the commercial sensor using the multi-port inlet. The commercial sensor was operated at 1 Hz and adjacent averaging was used to adjust the time response to 5s to match the open-path sensor which filtered and fit a spectrum every 5 seconds. The open-path sensor used the global iterative filter described above with tolerance of 0.7x10−8 cm−1. A linear fit between concentrations from the open-path and commercial closed-path sensors showed excellent agreement with slope of 1.005 ± 0.002 (R2 = 0.977). The iterative filter was robust to changing the tolerance parameter in the range of ~0.7x10−8 – 2.8x10−8 cm−1 with the variance between the filtered open-path data set and the closed-path data set changing by less than 20% over this tolerance range. (Variance between data sets is calculated as the average of the square of the difference of the individual corresponding data points from the two sensors.) The frequency bin filter also yielded similar results, with data set variances within 20% of one another, and of the iterative filter, for tolerances between 0.35x10−8 – 2.8x10−8 cm−1, and/or varying the mode determination percentage between 25 and 75%.

 figure: Fig. 7

Fig. 7 Experiment setup for methane comparison (a) between open-path instrument and commercial closed-path instrument (PicarroG2203). Results of comparison measurements shown in (b), averaged to 5-seconds.

Download Full Size | PPT Slide | PDF

The small discrepancies between the open-path and commercial instrument concentrations are partly due to spatial variations in the near-field turbulent plume that is sampled differently by the two sensors, i.e. use of 8 inlet points versus full cavity length. Indeed, switching the commercial sensor to the 8-inlet configuration significantly improved agreement with the open-path sensor, as compared to initial measurements with the closed-path sensor using the single point inlet. The discrepancies may also be due to limitations in the response of the commercial closed path analyzer. A similar comparison of ammonia plume measurements between open-path laser absorption (WMS) and a commercial closed-path CRDS analyzer has been reported by Sun et al. [41]. As is the case in our data, the open-path analyzer tended to capture more dynamic behavior, i.e. higher and lower readings as concentrations are changing, while the closed-path analyzer showed a flatter response (even when the data were averaged to give matching time steps). Future studies should examine open-path CRDS measurements for different atmospheric (particle) conditions, ideally also via comparison with other open-path sensors.

4. Conclusion

Accurate measurements of atmospheric constituents are an integral part of seeking answers to many global environmental uncertainties. Development of open-path CRDS instruments can provide great practical advantages relative to closed-path instruments, including lighter weight and less power hungry sensors amenable to remote deployment on mobile platforms. The open-path architecture is also very attractive for sticky gases, since the inlet is effectively removed. To date, there have been very limited reports of open-path CRDS as applied to ambient air sampling; in particular there has been minimal consideration of effects of aerosol extinction in such configurations. The present results show the potential of highly sensitive open-path CRDS detection including simple software filters to minimize impacts of fluctuating aerosol extinction. Optical sensitivities of ~6x10−10 cm−1Hz-1/2 have been achieved, within an order of magnitude of more traditional closed-path systems, and better than what can normally be attained with less sensitive absorption methods such as WMS. Our work has shown that with appropriate spectral fitting, wider and sometimes overlapping lines at atmospheric pressure can still be accurately fit (though details might will for different analytes and spectral lines). We have also demonstrated a simple and lightweight system to maintain high mirror reflectivity (R>0.99996) for over 100 hours of operation with ambient air. The analysis method does not use a fixed reflectivity, so very small changes in reflectivity do not degrade accuracy.

Future work will include sensor testing in an environmental chamber where we can simultaneously introduce both known amounts of aerosol and gas concentrations as well as use of MIR sources to probe stronger absorption lines for improved concentration sensitivity.

References and links

1. J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97(1), 25–52 (1997). [CrossRef]   [PubMed]  

2. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000). [CrossRef]  

3. G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications (Blackwell Publishing Ltd., 2009).

4. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544 (1988). [CrossRef]  

5. S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73(9), 3291 (2002). [CrossRef]  

6. J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012). [CrossRef]  

7. A. M. Pierce, C. W. Moore, G. Wohlfahrt, L. Hörtnagl, N. Kljun, and D. Obrist, “Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy,” Environ. Sci. Technol. 49(3), 1559–1568 (2015). [CrossRef]   [PubMed]  

8. J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, “Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection,” Appl. Opt. 44(33), 7239–7242 (2005). [CrossRef]   [PubMed]  

9. H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

10. H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010). [CrossRef]  

11. D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2), 261–265 (2002). [CrossRef]  

12. A. Pettersson, E. R. Lovejoy, C. Aa Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004). [CrossRef]  

13. E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008). [CrossRef]   [PubMed]  

14. C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007). [CrossRef]  

15. R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Measurements of the wavelength dependent extinction of aerosols by cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 12(15), 3914–3920 (2010). [CrossRef]   [PubMed]  

16. V. Bulatov, M. Fisher, and I. Schechter, “Aerosol analysis by cavity-ring-down laser spectroscopy,” Anal. Chim. Acta 466(1), 1–9 (2002). [CrossRef]  

17. E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett Jr, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

18. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270(5), 538–545 (1997). [CrossRef]  

19. J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B 78(3), 465–476 (2004). [CrossRef]  

20. J. D. Smith and D. B. Atkinson, “A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol,” Analyst (Lond.) 126(8), 1216–1220 (2001). [CrossRef]   [PubMed]  

21. T. J. A. Butler, J. L. Miller, and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. the effect of position of a particle within the laser beam on extinction,” J. Chem. Phys. 126(17), 174302 (2007). [CrossRef]   [PubMed]  

22. J. L. Miller and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurement of single aerosol particle extinction. II. Extinction of light by an aerosol particle in an optical cavity excited by a cw laser,” J. Chem. Phys. 126(17), 174303 (2007). [CrossRef]   [PubMed]  

23. Picarro, “Datasheet G2301 CRDS Analyzer for CO2 CH4 H2O in Air OCT15.pdf “, https://picarro.app.box.com/s/5er36ac0ncmy1eruxge1p231cy00sl7k.

24. R. W. Howarth, R. Santoro, and A. Ingraffea, “Methane and the greenhouse-gas footprint of natural gas from shale formations,” Clim. Change 106(4), 679–690 (2011). [CrossRef]  

25. D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013). [CrossRef]   [PubMed]  

26. T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015). [CrossRef]   [PubMed]  

27. X. Lan, R. Talbot, P. Laine, and A. Torres, “Characterizing fugitive methane emissions in the barnett shale area using a mobile laboratory,” Environ. Sci. Technol. 49(13), 8139–8146 (2015). [CrossRef]   [PubMed]  

28. J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010). [CrossRef]  

29. Y. He, C. Jin, R. Kan, J. Liu, W. Liu, J. Hill, I. M. Jamie, and B. J. Orr, “Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers,” Opt. Express 22(11), 13170–13189 (2014). [CrossRef]   [PubMed]  

30. R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58(1), 69–87 (2007). [CrossRef]  

31. M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown Spectrometer for in-situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. Discuss. 5(9), 2547–2560 (2005). [CrossRef]  

32. T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015). [CrossRef]  

33. A. Schocker, K. Kohse-Höinghaus, and A. Brockhinke, “Quantitative determination of combustion intermediates with cavity ring-down spectroscopy: systematic study in propene flames near the soot-formation limit,” Appl. Opt. 44(31), 6660–6672 (2005). [CrossRef]   [PubMed]  

34. J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997). [CrossRef]  

35. A. P. Yalin, C. O. Laux, C. H. Kruger, and R. N. Zare, “Spatial profiles of N2+ concentration in an atmospheric pressure nitrogen glow discharge,” Plasma Sources Sci. Technol. 11(3), 248–253 (2002). [CrossRef]  

36. C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014). [CrossRef]  

37. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003). [CrossRef]   [PubMed]  

38. K. K. Lehmann and H. Huang, Frontiers of Molecular Spectroscopy (Elsevier, 2009), Ch. 18.

39. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013). [CrossRef]  

40. H. Huang and K. K. Lehmann, “Long-term stability in continuous wave cavity ringdown spectroscopy experiments,” Appl. Opt. 49(8), 1378–1387 (2010). [CrossRef]   [PubMed]  

41. K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015). [CrossRef]  

References

  • View by:

  1. J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97(1), 25–52 (1997).
    [Crossref] [PubMed]
  2. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
    [Crossref]
  3. G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications (Blackwell Publishing Ltd., 2009).
  4. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544 (1988).
    [Crossref]
  5. S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73(9), 3291 (2002).
    [Crossref]
  6. J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
    [Crossref]
  7. A. M. Pierce, C. W. Moore, G. Wohlfahrt, L. Hörtnagl, N. Kljun, and D. Obrist, “Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy,” Environ. Sci. Technol. 49(3), 1559–1568 (2015).
    [Crossref] [PubMed]
  8. J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, “Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection,” Appl. Opt. 44(33), 7239–7242 (2005).
    [Crossref] [PubMed]
  9. H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).
  10. H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
    [Crossref]
  11. D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2), 261–265 (2002).
    [Crossref]
  12. A. Pettersson, E. R. Lovejoy, C. Aa Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
    [Crossref]
  13. E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008).
    [Crossref] [PubMed]
  14. C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
    [Crossref]
  15. R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Measurements of the wavelength dependent extinction of aerosols by cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 12(15), 3914–3920 (2010).
    [Crossref] [PubMed]
  16. V. Bulatov, M. Fisher, and I. Schechter, “Aerosol analysis by cavity-ring-down laser spectroscopy,” Anal. Chim. Acta 466(1), 1–9 (2002).
    [Crossref]
  17. E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).
  18. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270(5), 538–545 (1997).
    [Crossref]
  19. J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B 78(3), 465–476 (2004).
    [Crossref]
  20. J. D. Smith and D. B. Atkinson, “A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol,” Analyst (Lond.) 126(8), 1216–1220 (2001).
    [Crossref] [PubMed]
  21. T. J. A. Butler, J. L. Miller, and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. the effect of position of a particle within the laser beam on extinction,” J. Chem. Phys. 126(17), 174302 (2007).
    [Crossref] [PubMed]
  22. J. L. Miller and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurement of single aerosol particle extinction. II. Extinction of light by an aerosol particle in an optical cavity excited by a cw laser,” J. Chem. Phys. 126(17), 174303 (2007).
    [Crossref] [PubMed]
  23. Picarro, “Datasheet G2301 CRDS Analyzer for CO2 CH4 H2O in Air OCT15.pdf “, https://picarro.app.box.com/s/5er36ac0ncmy1eruxge1p231cy00sl7k .
  24. R. W. Howarth, R. Santoro, and A. Ingraffea, “Methane and the greenhouse-gas footprint of natural gas from shale formations,” Clim. Change 106(4), 679–690 (2011).
    [Crossref]
  25. D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
    [Crossref] [PubMed]
  26. T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015).
    [Crossref] [PubMed]
  27. X. Lan, R. Talbot, P. Laine, and A. Torres, “Characterizing fugitive methane emissions in the barnett shale area using a mobile laboratory,” Environ. Sci. Technol. 49(13), 8139–8146 (2015).
    [Crossref] [PubMed]
  28. J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
    [Crossref]
  29. Y. He, C. Jin, R. Kan, J. Liu, W. Liu, J. Hill, I. M. Jamie, and B. J. Orr, “Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers,” Opt. Express 22(11), 13170–13189 (2014).
    [Crossref] [PubMed]
  30. R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58(1), 69–87 (2007).
    [Crossref]
  31. M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown Spectrometer for in-situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. Discuss. 5(9), 2547–2560 (2005).
    [Crossref]
  32. T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
    [Crossref]
  33. A. Schocker, K. Kohse-Höinghaus, and A. Brockhinke, “Quantitative determination of combustion intermediates with cavity ring-down spectroscopy: systematic study in propene flames near the soot-formation limit,” Appl. Opt. 44(31), 6660–6672 (2005).
    [Crossref] [PubMed]
  34. J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
    [Crossref]
  35. A. P. Yalin, C. O. Laux, C. H. Kruger, and R. N. Zare, “Spatial profiles of N2+ concentration in an atmospheric pressure nitrogen glow discharge,” Plasma Sources Sci. Technol. 11(3), 248–253 (2002).
    [Crossref]
  36. C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
    [Crossref]
  37. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
    [Crossref] [PubMed]
  38. K. K. Lehmann and H. Huang, Frontiers of Molecular Spectroscopy (Elsevier, 2009), Ch. 18.
  39. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
    [Crossref]
  40. H. Huang and K. K. Lehmann, “Long-term stability in continuous wave cavity ringdown spectroscopy experiments,” Appl. Opt. 49(8), 1378–1387 (2010).
    [Crossref] [PubMed]
  41. K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015).
    [Crossref]

2015 (5)

A. M. Pierce, C. W. Moore, G. Wohlfahrt, L. Hörtnagl, N. Kljun, and D. Obrist, “Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy,” Environ. Sci. Technol. 49(3), 1559–1568 (2015).
[Crossref] [PubMed]

T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015).
[Crossref] [PubMed]

X. Lan, R. Talbot, P. Laine, and A. Torres, “Characterizing fugitive methane emissions in the barnett shale area using a mobile laboratory,” Environ. Sci. Technol. 49(13), 8139–8146 (2015).
[Crossref] [PubMed]

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015).
[Crossref]

2014 (2)

Y. He, C. Jin, R. Kan, J. Liu, W. Liu, J. Hill, I. M. Jamie, and B. J. Orr, “Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers,” Opt. Express 22(11), 13170–13189 (2014).
[Crossref] [PubMed]

C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
[Crossref]

2013 (2)

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

2012 (1)

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

2011 (1)

R. W. Howarth, R. Santoro, and A. Ingraffea, “Methane and the greenhouse-gas footprint of natural gas from shale formations,” Clim. Change 106(4), 679–690 (2011).
[Crossref]

2010 (5)

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Measurements of the wavelength dependent extinction of aerosols by cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 12(15), 3914–3920 (2010).
[Crossref] [PubMed]

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

H. Huang and K. K. Lehmann, “Long-term stability in continuous wave cavity ringdown spectroscopy experiments,” Appl. Opt. 49(8), 1378–1387 (2010).
[Crossref] [PubMed]

2008 (1)

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008).
[Crossref] [PubMed]

2007 (4)

C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
[Crossref]

T. J. A. Butler, J. L. Miller, and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. the effect of position of a particle within the laser beam on extinction,” J. Chem. Phys. 126(17), 174302 (2007).
[Crossref] [PubMed]

J. L. Miller and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurement of single aerosol particle extinction. II. Extinction of light by an aerosol particle in an optical cavity excited by a cw laser,” J. Chem. Phys. 126(17), 174303 (2007).
[Crossref] [PubMed]

R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58(1), 69–87 (2007).
[Crossref]

2006 (1)

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

2005 (3)

2004 (2)

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B 78(3), 465–476 (2004).
[Crossref]

A. Pettersson, E. R. Lovejoy, C. Aa Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

2003 (1)

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[Crossref] [PubMed]

2002 (4)

A. P. Yalin, C. O. Laux, C. H. Kruger, and R. N. Zare, “Spatial profiles of N2+ concentration in an atmospheric pressure nitrogen glow discharge,” Plasma Sources Sci. Technol. 11(3), 248–253 (2002).
[Crossref]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73(9), 3291 (2002).
[Crossref]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2), 261–265 (2002).
[Crossref]

V. Bulatov, M. Fisher, and I. Schechter, “Aerosol analysis by cavity-ring-down laser spectroscopy,” Anal. Chim. Acta 466(1), 1–9 (2002).
[Crossref]

2001 (1)

J. D. Smith and D. B. Atkinson, “A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol,” Analyst (Lond.) 126(8), 1216–1220 (2001).
[Crossref] [PubMed]

2000 (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

1997 (3)

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97(1), 25–52 (1997).
[Crossref] [PubMed]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270(5), 538–545 (1997).
[Crossref]

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[Crossref]

1988 (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544 (1988).
[Crossref]

Aa Brock, C.

A. Pettersson, E. R. Lovejoy, C. Aa Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

Allen, D. T.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Aniolek, K. W.

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[Crossref]

Apodaca, R. L.

Arnott, W. P.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Atkinson, D. B.

J. D. Smith and D. B. Atkinson, “A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol,” Analyst (Lond.) 126(8), 1216–1220 (2001).
[Crossref] [PubMed]

Ayers, J. D.

Baasandorj, M.

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Babikov, Y.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Baer, D. S.

J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, “Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection,” Appl. Opt. 44(33), 7239–7242 (2005).
[Crossref] [PubMed]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2), 261–265 (2002).
[Crossref]

Ball, S. M.

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown Spectrometer for in-situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. Discuss. 5(9), 2547–2560 (2005).
[Crossref]

Barbe, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Baynard, T.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

Beames, J. M.

R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58(1), 69–87 (2007).
[Crossref]

Beck, V.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Birk, M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Bitter, M.

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown Spectrometer for in-situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. Discuss. 5(9), 2547–2560 (2005).
[Crossref]

Bizzocchi, L.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Boudon, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Brock, C. A.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

Brockhinke, A.

Brown, L. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Brown, S. S.

C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
[Crossref]

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

A. Pettersson, E. R. Lovejoy, C. Aa Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73(9), 3291 (2002).
[Crossref]

Bulatov, V.

V. Bulatov, M. Fisher, and I. Schechter, “Aerosol analysis by cavity-ring-down laser spectroscopy,” Anal. Chim. Acta 466(1), 1–9 (2002).
[Crossref]

Burkholder, J. B.

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Burling, I. R.

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Butler, T. J. A.

T. J. A. Butler, J. L. Miller, and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. the effect of position of a particle within the laser beam on extinction,” J. Chem. Phys. 126(17), 174302 (2007).
[Crossref] [PubMed]

Campargue, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Carrico, C. M.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Cernansky, N. P.

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[Crossref]

Chance, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Chen, H.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Chenevier, M.

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B 78(3), 465–476 (2004).
[Crossref]

Chow, V. Y.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Chris Benner, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Ciciora, S. J.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73(9), 3291 (2002).
[Crossref]

Cohen, E. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Collett, J. L.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Coudert, L. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Crosson, E. R.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Daube, B. C.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

de Gouw, J.

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544 (1988).
[Crossref]

Devi, V. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Dinar, E.

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008).
[Crossref] [PubMed]

Drouin, B. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Dube, W. P.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

Dudek, J. B.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[Crossref] [PubMed]

Eloranta, E. W.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

Erdesz, F.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

Erlick, C.

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008).
[Crossref] [PubMed]

Fayt, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Fisher, M.

V. Bulatov, M. Fisher, and I. Schechter, “Aerosol analysis by cavity-ring-down laser spectroscopy,” Anal. Chim. Acta 466(1), 1–9 (2002).
[Crossref]

Flaud, J.-M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Fortin, T. J.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

Franka, I. S.

C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
[Crossref]

Fraser, M. P.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Gerbig, C.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Gordon, T. D.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

Gottlieb, E. W.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Gupta, M.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2), 261–265 (2002).
[Crossref]

Hagen, C. L.

C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
[Crossref]

Halonen, L.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

Ham, J. M.

K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015).
[Crossref]

Hao, W. M.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Harrison, J. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Harrison, M.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Hartmann, J.-M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

He, Y.

Hendler, A.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Herndon, S. C.

T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015).
[Crossref] [PubMed]

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Hill, A. D.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Hill, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Hill, J.

Hodges, J. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Hoefer, A.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Hörtnagl, L.

A. M. Pierce, C. W. Moore, G. Wohlfahrt, L. Hörtnagl, N. Kljun, and D. Obrist, “Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy,” Environ. Sci. Technol. 49(3), 1559–1568 (2015).
[Crossref] [PubMed]

Howarth, R. W.

R. W. Howarth, R. Santoro, and A. Ingraffea, “Methane and the greenhouse-gas footprint of natural gas from shale formations,” Clim. Change 106(4), 679–690 (2011).
[Crossref]

Huang, H.

Ingraffea, A.

R. W. Howarth, R. Santoro, and A. Ingraffea, “Methane and the greenhouse-gas footprint of natural gas from shale formations,” Clim. Change 106(4), 679–690 (2011).
[Crossref]

Jacquemart, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Jamie, I. M.

Jin, C.

Johnson, T. J.

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Jolly, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Jones, R. L.

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown Spectrometer for in-situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. Discuss. 5(9), 2547–2560 (2005).
[Crossref]

Kachanov, A. A.

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B 78(3), 465–476 (2004).
[Crossref]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270(5), 538–545 (1997).
[Crossref]

Kan, R.

Kiss, G.

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008).
[Crossref] [PubMed]

Kljun, N.

A. M. Pierce, C. W. Moore, G. Wohlfahrt, L. Hörtnagl, N. Kljun, and D. Obrist, “Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy,” Environ. Sci. Technol. 49(3), 1559–1568 (2015).
[Crossref] [PubMed]

Kofler, J.

T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015).
[Crossref] [PubMed]

Kohse-Höinghaus, K.

Kolb, C. E.

T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015).
[Crossref] [PubMed]

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Kolle, O.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Kreidenweis, S. M.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Kruger, C. H.

A. P. Yalin, C. O. Laux, C. H. Kruger, and R. N. Zare, “Spatial profiles of N2+ concentration in an atmospheric pressure nitrogen glow discharge,” Plasma Sources Sci. Technol. 11(3), 248–253 (2002).
[Crossref]

Laine, P.

X. Lan, R. Talbot, P. Laine, and A. Torres, “Characterizing fugitive methane emissions in the barnett shale area using a mobile laboratory,” Environ. Sci. Technol. 49(13), 8139–8146 (2015).
[Crossref] [PubMed]

Lamb, B. K.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Lamouroux, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Lan, X.

X. Lan, R. Talbot, P. Laine, and A. Torres, “Characterizing fugitive methane emissions in the barnett shale area using a mobile laboratory,” Environ. Sci. Technol. 49(13), 8139–8146 (2015).
[Crossref] [PubMed]

Laux, C. O.

A. P. Yalin, C. O. Laux, C. H. Kruger, and R. N. Zare, “Spatial profiles of N2+ concentration in an atmospheric pressure nitrogen glow discharge,” Plasma Sources Sci. Technol. 11(3), 248–253 (2002).
[Crossref]

Law, D. C.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

Le Roy, R. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Lee, B. C.

C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
[Crossref]

Lehmann, K. K.

H. Huang and K. K. Lehmann, “Long-term stability in continuous wave cavity ringdown spectroscopy experiments,” Appl. Opt. 49(8), 1378–1387 (2010).
[Crossref] [PubMed]

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[Crossref] [PubMed]

Lerner, B. M.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

Levin, E. J. T.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Li, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Liu, J.

Liu, W.

Long, D. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Lovejoy, E. R.

A. Pettersson, E. R. Lovejoy, C. Aa Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

Lyon, D.

T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015).
[Crossref] [PubMed]

Lyulin, O. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Mack, L. E.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Mackie, C. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Malm, W. C.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Massie, S. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

McLaughlin, R. J.

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73(9), 3291 (2002).
[Crossref]

McMeeking, G. R.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

Metsälä, M.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

Mikhailenko, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Miles, R. E. H.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Measurements of the wavelength dependent extinction of aerosols by cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 12(15), 3914–3920 (2010).
[Crossref] [PubMed]

Miller, D. J.

K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015).
[Crossref]

Miller, J. L.

J. L. Miller and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurement of single aerosol particle extinction. II. Extinction of light by an aerosol particle in an optical cavity excited by a cw laser,” J. Chem. Phys. 126(17), 174303 (2007).
[Crossref] [PubMed]

T. J. A. Butler, J. L. Miller, and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. the effect of position of a particle within the laser beam on extinction,” J. Chem. Phys. 126(17), 174302 (2007).
[Crossref] [PubMed]

Miskimins, J.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Moore, C. W.

A. M. Pierce, C. W. Moore, G. Wohlfahrt, L. Hörtnagl, N. Kljun, and D. Obrist, “Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy,” Environ. Sci. Technol. 49(3), 1559–1568 (2015).
[Crossref] [PubMed]

Moosmuller, H.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Morville, J.

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B 78(3), 465–476 (2004).
[Crossref]

Müller, H. S. P.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Murphy, D. M.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

Nash, C.

K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015).
[Crossref]

Naumenko, O. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Neuman, J. A.

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Nikitin, A. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

O’Keefe, A.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2), 261–265 (2002).
[Crossref]

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97(1), 25–52 (1997).
[Crossref] [PubMed]

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544 (1988).
[Crossref]

Obrist, D.

A. M. Pierce, C. W. Moore, G. Wohlfahrt, L. Hörtnagl, N. Kljun, and D. Obrist, “Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy,” Environ. Sci. Technol. 49(3), 1559–1568 (2015).
[Crossref] [PubMed]

Orphal, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Orr, B. J.

Orr-Ewing, A. J.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Measurements of the wavelength dependent extinction of aerosols by cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 12(15), 3914–3920 (2010).
[Crossref] [PubMed]

T. J. A. Butler, J. L. Miller, and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. the effect of position of a particle within the laser beam on extinction,” J. Chem. Phys. 126(17), 174302 (2007).
[Crossref] [PubMed]

J. L. Miller and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurement of single aerosol particle extinction. II. Extinction of light by an aerosol particle in an optical cavity excited by a cw laser,” J. Chem. Phys. 126(17), 174303 (2007).
[Crossref] [PubMed]

R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58(1), 69–87 (2007).
[Crossref]

Osthoff, H. D.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

Paul, J. B.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2), 261–265 (2002).
[Crossref]

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97(1), 25–52 (1997).
[Crossref] [PubMed]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

Peltola, J.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

Perevalov, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Perrin, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Pétron, G.

T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015).
[Crossref] [PubMed]

Pettersson, A.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

A. Pettersson, E. R. Lovejoy, C. Aa Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

Pierce, A. M.

A. M. Pierce, C. W. Moore, G. Wohlfahrt, L. Hörtnagl, N. Kljun, and D. Obrist, “Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy,” Environ. Sci. Technol. 49(3), 1559–1568 (2015).
[Crossref] [PubMed]

Polovtseva, E. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Povey, I. M.

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown Spectrometer for in-situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. Discuss. 5(9), 2547–2560 (2005).
[Crossref]

Rabinowitz, P.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[Crossref] [PubMed]

Rakestraw, D. J.

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[Crossref]

Rath, J. L.

C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
[Crossref]

Ravishankara, A. R.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

A. Pettersson, E. R. Lovejoy, C. Aa Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73(9), 3291 (2002).
[Crossref]

Reid, J. P.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Measurements of the wavelength dependent extinction of aerosols by cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 12(15), 3914–3920 (2010).
[Crossref] [PubMed]

Rella, C. W.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Richard, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Richardson, M. S.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

Riziq, A. A.

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008).
[Crossref] [PubMed]

C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
[Crossref]

Roberts, J. M.

C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
[Crossref]

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Romanini, D.

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B 78(3), 465–476 (2004).
[Crossref]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270(5), 538–545 (1997).
[Crossref]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Rudic, S.

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Measurements of the wavelength dependent extinction of aerosols by cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 12(15), 3914–3920 (2010).
[Crossref] [PubMed]

Rudich, Y.

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008).
[Crossref] [PubMed]

C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
[Crossref]

Ryerson, T. B.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

Santoni, G. W.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Santoro, R.

R. W. Howarth, R. Santoro, and A. Ingraffea, “Methane and the greenhouse-gas footprint of natural gas from shale formations,” Clim. Change 106(4), 679–690 (2011).
[Crossref]

Sawyer, R. F.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Saykally, R. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97(1), 25–52 (1997).
[Crossref] [PubMed]

Schechter, I.

V. Bulatov, M. Fisher, and I. Schechter, “Aerosol analysis by cavity-ring-down laser spectroscopy,” Anal. Chim. Acta 466(1), 1–9 (2002).
[Crossref]

Scherer, J. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97(1), 25–52 (1997).
[Crossref] [PubMed]

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[Crossref]

Schocker, A.

Seinfeld, J. H.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Shonkwiler, K. B.

K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015).
[Crossref]

Siltanen, M.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

Simpson, W. R.

Smith, J. D.

J. D. Smith and D. B. Atkinson, “A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol,” Analyst (Lond.) 126(8), 1216–1220 (2001).
[Crossref] [PubMed]

Smith, M. A. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Spindler, C.

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008).
[Crossref] [PubMed]

C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
[Crossref]

Starikova, E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Stark, H.

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73(9), 3291 (2002).
[Crossref]

Steinbach, J.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Stoeckel, F.

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270(5), 538–545 (1997).
[Crossref]

Sullivan, D. W.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Sun, K.

K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015).
[Crossref]

Sung, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Talbot, R.

X. Lan, R. Talbot, P. Laine, and A. Torres, “Characterizing fugitive methane emissions in the barnett shale area using a mobile laboratory,” Environ. Sci. Technol. 49(13), 8139–8146 (2015).
[Crossref] [PubMed]

Tao, L.

K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015).
[Crossref]

Tarsa, P. B.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[Crossref] [PubMed]

Tashkun, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Tennyson, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Thomas, J.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Toon, G. C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Torres, A.

X. Lan, R. Talbot, P. Laine, and A. Torres, “Characterizing fugitive methane emissions in the barnett shale area using a mobile laboratory,” Environ. Sci. Technol. 49(13), 8139–8146 (2015).
[Crossref] [PubMed]

Torres, V. M.

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Tyuterev, V. G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Ulvila, V.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

Vainio, M.

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

Van Pelt, A. D.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Vandenboer, T. C.

C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
[Crossref]

Velasquez, A.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[Crossref] [PubMed]

Veres, P.

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Wada, R.

R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58(1), 69–87 (2007).
[Crossref]

Wagner, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Wagner, N. L.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

Warneke, C.

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Washenfelder, R. A.

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Williams, E. J.

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

Winderlich, J.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Wladyslawski, M.

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[Crossref] [PubMed]

Wofsy, S. C.

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Wohlfahrt, G.

A. M. Pierce, C. W. Moore, G. Wohlfahrt, L. Hörtnagl, N. Kljun, and D. Obrist, “Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy,” Environ. Sci. Technol. 49(3), 1559–1568 (2015).
[Crossref] [PubMed]

Wold, C. E.

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

Wolfe, D.

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

Yacovitch, T. I.

T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015).
[Crossref] [PubMed]

Yalin, A. P.

C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
[Crossref]

A. P. Yalin, C. O. Laux, C. H. Kruger, and R. N. Zare, “Spatial profiles of N2+ concentration in an atmospheric pressure nitrogen glow discharge,” Plasma Sources Sci. Technol. 11(3), 248–253 (2002).
[Crossref]

Yokelson, R. J.

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

Zahniser, M. S.

T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015).
[Crossref] [PubMed]

Zare, R. N.

A. P. Yalin, C. O. Laux, C. H. Kruger, and R. N. Zare, “Spatial profiles of N2+ concentration in an atmospheric pressure nitrogen glow discharge,” Plasma Sources Sci. Technol. 11(3), 248–253 (2002).
[Crossref]

Zondlo, M. A.

K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015).
[Crossref]

Aerosol Sci. Technol. (2)

C. Spindler, A. A. Riziq, and Y. Rudich, “Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information,” Aerosol Sci. Technol. 41(11), 1011–1017 (2007).
[Crossref]

T. D. Gordon, N. L. Wagner, M. S. Richardson, D. C. Law, D. Wolfe, E. W. Eloranta, C. A. Brock, F. Erdesz, and D. M. Murphy, “Design of a novel open-path aerosol extinction cavity ringdown spectrometer,” Aerosol Sci. Technol. 6826(9), 717–726 (2015).
[Crossref]

Agric. For. Meteorol. (1)

K. Sun, L. Tao, D. J. Miller, M. A. Zondlo, K. B. Shonkwiler, C. Nash, and J. M. Ham, “Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot,” Agric. For. Meteorol. 213, 193–202 (2015).
[Crossref]

Anal. Chem. (1)

J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75(17), 4599–4605 (2003).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

V. Bulatov, M. Fisher, and I. Schechter, “Aerosol analysis by cavity-ring-down laser spectroscopy,” Anal. Chim. Acta 466(1), 1–9 (2002).
[Crossref]

Analyst (Lond.) (1)

J. D. Smith and D. B. Atkinson, “A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol,” Analyst (Lond.) 126(8), 1216–1220 (2001).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (3)

J. Peltola, M. Vainio, V. Ulvila, M. Siltanen, M. Metsälä, and L. Halonen, “Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator,” Appl. Phys. B 107(3), 839–847 (2012).
[Crossref]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75(2), 261–265 (2002).
[Crossref]

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B 78(3), 465–476 (2004).
[Crossref]

Atmos. Chem. Phys. Discuss. (1)

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown Spectrometer for in-situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. Discuss. 5(9), 2547–2560 (2005).
[Crossref]

Atmos. Meas. Tech. (3)

C. L. Hagen, B. C. Lee, I. S. Franka, J. L. Rath, T. C. Vandenboer, J. M. Roberts, S. S. Brown, and A. P. Yalin, “Cavity ring-down spectroscopy sensor for detection of hydrogen chloride,” Atmos. Meas. Tech. 7(2), 345–357 (2014).
[Crossref]

J. M. Roberts, P. Veres, C. Warneke, J. A. Neuman, R. A. Washenfelder, S. S. Brown, M. Baasandorj, J. B. Burkholder, I. R. Burling, T. J. Johnson, R. J. Yokelson, and J. de Gouw, “Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions,” Atmos. Meas. Tech. 3(4), 981–990 (2010).
[Crossref]

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy, “High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 3(2), 375–386 (2010).
[Crossref]

Chem. Phys. Lett. (1)

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270(5), 538–545 (1997).
[Crossref]

Chem. Rev. (1)

J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97(1), 25–52 (1997).
[Crossref] [PubMed]

Clim. Change (1)

R. W. Howarth, R. Santoro, and A. Ingraffea, “Methane and the greenhouse-gas footprint of natural gas from shale formations,” Clim. Change 106(4), 679–690 (2011).
[Crossref]

Environ. Sci. Technol. (3)

T. I. Yacovitch, S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb, “Mobile laboratory observations of methane emissions in the Barnett Shale region,” Environ. Sci. Technol. 49(13), 7889–7895 (2015).
[Crossref] [PubMed]

X. Lan, R. Talbot, P. Laine, and A. Torres, “Characterizing fugitive methane emissions in the barnett shale area using a mobile laboratory,” Environ. Sci. Technol. 49(13), 8139–8146 (2015).
[Crossref] [PubMed]

A. M. Pierce, C. W. Moore, G. Wohlfahrt, L. Hörtnagl, N. Kljun, and D. Obrist, “Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy,” Environ. Sci. Technol. 49(3), 1559–1568 (2015).
[Crossref] [PubMed]

Faraday Discuss. (1)

E. Dinar, A. A. Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008).
[Crossref] [PubMed]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000).
[Crossref]

J. Aerosol Sci. (1)

A. Pettersson, E. R. Lovejoy, C. Aa Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35(8), 995–1011 (2004).
[Crossref]

J. Atmos. Chem. (1)

R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58(1), 69–87 (2007).
[Crossref]

J. Chem. Phys. (3)

J. J. Scherer, K. W. Aniolek, N. P. Cernansky, and D. J. Rakestraw, “Determination of methyl radical concentrations in a methane air flame by infrared cavity ringdown laser absorption spectroscopy,” J. Chem. Phys. 107(16), 6196–6203 (1997).
[Crossref]

T. J. A. Butler, J. L. Miller, and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. the effect of position of a particle within the laser beam on extinction,” J. Chem. Phys. 126(17), 174302 (2007).
[Crossref] [PubMed]

J. L. Miller and A. J. Orr-Ewing, “Cavity ring-down spectroscopy measurement of single aerosol particle extinction. II. Extinction of light by an aerosol particle in an optical cavity excited by a cw laser,” J. Chem. Phys. 126(17), 174303 (2007).
[Crossref] [PubMed]

J. Geophys. Res. Atmos. (2)

E. J. T. Levin, G. R. McMeeking, C. M. Carrico, L. E. Mack, S. M. Kreidenweis, C. E. Wold, H. Moosmuller, W. P. Arnott, W. M. Hao, J. L. Collett, and W. C. Malm, “Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME),” J. Geophys. Res. Atmos. 115(18), 1–15 (2010).

H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, “Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy,” J. Geophys. Res. Atmos. 111(2), 1–10 (2006).

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

R. E. H. Miles, S. Rudić, A. J. Orr-Ewing, and J. P. Reid, “Measurements of the wavelength dependent extinction of aerosols by cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 12(15), 3914–3920 (2010).
[Crossref] [PubMed]

Plasma Sources Sci. Technol. (1)

A. P. Yalin, C. O. Laux, C. H. Kruger, and R. N. Zare, “Spatial profiles of N2+ concentration in an atmospheric pressure nitrogen glow discharge,” Plasma Sources Sci. Technol. 11(3), 248–253 (2002).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

D. T. Allen, V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld, “Measurements of methane emissions at natural gas production sites in the United States,” Proc. Natl. Acad. Sci. U. S. A. 110(44), 17768–17773 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544 (1988).
[Crossref]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73(9), 3291 (2002).
[Crossref]

Other (3)

G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications (Blackwell Publishing Ltd., 2009).

Picarro, “Datasheet G2301 CRDS Analyzer for CO2 CH4 H2O in Air OCT15.pdf “, https://picarro.app.box.com/s/5er36ac0ncmy1eruxge1p231cy00sl7k .

K. K. Lehmann and H. Huang, Frontiers of Molecular Spectroscopy (Elsevier, 2009), Ch. 18.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of open-path CRDS instrument.
Fig. 2
Fig. 2 Simulated absorption spectra in the vicinity of the targeted CH4 lines. Simulated conditions are: CH4 = 1.8 ppmv, H2O = 0.013 (50% Relative Humidity), T = 298 K, P = 0.84 atm (atmospheric pressure in Colorado).
Fig. 3
Fig. 3 Histogram of CRDS absorption measurements for closed-cell measurement of zero air with no particles and open-path measurement of ambient laboratory air. Arrow indicates range of points within 50%, ± 0.7x10−8 cm−1 filter. See text.
Fig. 4
Fig. 4 Allan deviation of absorption values for closed-path (zero-air), open-path ambient air, and open-path ambient air with software filter.
Fig. 5
Fig. 5 Methane absorption spectrum of ambient laboratory air measured by open-path CRDS. Raw data shown with red points, data preserved by filter shown with black points, final spectral fit shown with cyan curve. Inset in Fig. 5(a) is more zoomed out to show larger fluctuations. Application of frequency bin filter shown in Fig. 5(a), global iterative filter in Fig. 5(b). The first iterative fit is shown with the dashed cyan curve. Intermediate fits not shown.
Fig. 6
Fig. 6 Methane concentrations recorded in closed-path configuration.
Fig. 7
Fig. 7 Experiment setup for methane comparison (a) between open-path instrument and commercial closed-path instrument (PicarroG2203). Results of comparison measurements shown in (b), averaged to 5-seconds.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k( ν )=b+ i=1 8 ϕ L ( ν, ν 0i ,Δ ν i )P S i n i
α ext = N( D p ) σ ext ( D p )d D p

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved