Abstract

Quantum steering is used to describe the “spooky action-at-a-distance” nonlocality raised in the Einstein-Podolsky-Rosen (EPR) paradox, which is important for understanding entanglement distribution and constructing quantum networks. Here, in this paper, we study an experimentally feasible scheme for generating quantum steering based on cascaded four-wave-mixing (FWM) processes in hot rubidium (Rb) vapor. Quantum steering, including bipartite steering and genuine tripartite steering among the output light fields, is theoretically analyzed. We find the corresponding gain regions in which the bipartite and tripartite steering exist. The results of bipartite steering can be used to establish a hierarchical steering model in which one beam can steer the other two beams in the whole gain region; however, the other two beams cannot steer the first beam simultaneously. Moreover, the other two beams cannot steer with each other in the whole gain region. More importantly, we investigate the gain dependence of the existence of the genuine tripartite steering and we find that the genuine tripartite steering exists in most of the whole gain region in the ideal case. Also we discuss the effect of losses on the genuine tripartite steering. Our results pave the way to experimental demonstration of quantum steering in cascaded FWM process.

© 2017 Optical Society of America

1. Introduction

Quantum steering has been investigated between two parties earlier [1–6]. The concept of genuine N-partite steering is developed by Q. Y. He et.al. in 2013 [7]. Further, motivated by considerations of the importance of multipartite steering for understanding entanglement distribution and constructing real-world quantum networks [8], S. Armstrong et. al. investigate the properties of multipartite steering relevant to quantum communication in 2015 [9]. In their experiment, the steering across all bipartitions can be used to establish quantum secret sharing. However, there is no genuine tripartite steering in their experiment. It has been shown that the special multipartite steerable states can be created in the multimode optical system [10] and multimode pulsed cavity optomechanical system [11]. Generation of genuine tripartite steering has been proposed in a hybrid massive system [12].

In 2007, Paul Lett’s group at NIST experimentally generated a pair of intensity-correlated beams based on nondegenerate four-wave-mixing (FWM) process in a hot rubidium(Rb) vapor [13]. This system has several advantages for practical implementations, e.g., no need of cavity due to strong nonlinearity of the system, spatial multimode nature due to no mode constrain, spatial separation of the generated nonclassical beams, etc. These advantages explain rapidly growing popularity of such a system in many applications, including quantum information processing and quantum metrology, such as entangled images [14], tunable delay of EPR entanglement [15], nonlinear quantum interferometer [16–20], high purity narrow-bandwidth single photons [21], ultrasensitive measurement of microcantilever displacement [22], the localized multi-spatial mode quadrature squeezing for quantum imaging [23] and so on [24–30].

Due to these advantages, it is a good candidate for generating multiple quantum correlated beams which have potential applications in quantum communication [8,31–36]. For example, theoretical proposals based on FWM in hot vapor have been proposed to realize CV cluster state generation over spatial comb through FWM process [37] and versatile quantum network generation by cascading several FWM processes [38]. In 2014, our group has experimentally generated three bright strongly quantum correlated beams by cascaded FWM processes in hot atomic vapors [17]. Also, this method is phase insensitive without the need of complicated phase locking technique. Inspired by these advantages of cascaded FWM system and motivated by the desire to generate the genuine tripartite steering, in this paper, we theoretically propose an experimentally feasible scheme for generating bipartite steering and genuine tripartite steering based on cascaded FWM processes in Rb vapor. We study how the bipartite and genuine tripartite steering depend on the system gain and propose the model of hierarchical steering.

This paper is organized as follows. In section 2, cascaded FWM processes are briefly introduced. In section 3, the bipartite steering of the system is also discussed. The genuine tripartite steering based on the cascaded FWM processes in Rb vapor is theoretically analyzed in section 4. We also discuss the genuine tripartite steering in the cascaded system with losses. Finally, a brief conclusion is given in section 5.

2. Cascaded FWM processes

The energy level diagram of a single FWM process in Rb atomic vapor is shown in Fig. 1(a). As shown in Fig. 1(b), a strong pump beam (ĉ1) and a much weaker probe beam (â1) are crossed in the center of the first Rb vapor cell with a slight angle. Probe (â1) and conjugate (1) beams are created via the FWM scheme in the first Rb vapor. Then the probe beam (â1) is fed into a second FWM process. The probe beam (â1) and a strong pump beam (ĉ2) are crossed in the center of the second Rb vapor. Then the probe (â2) and conjugate (2) beams are created after the second Rb vapor. Viewing the two FWM processes as a whole system, there are three output light beams, which are the probe â2 (Ô1), conjugate 2 (Ô2) and another conjugate 1 (Ô3).

 figure: Fig. 1

Fig. 1 Cascaded FWM processes in hot Rb vapor. (a) Double-λ energy level of Rb D1 line: Δ and δ stand for the one-photon detuning and the two-photon detuning respectively. The interaction strength depends strongly on the one-photon detuning Δ and the two-photon detuning δ. (b) The cascaded FWM scheme.

Download Full Size | PPT Slide | PDF

The FWM process involves the annihilation of two pump photons, and the creation of a single probe and a conjugate photon. Labeling the annihilation operator of the probe (â), conjugate () and pump (ĉ) respectively and the interaction strength by ζ, the Hamiltonian (Ĥ1) and (Ĥ2) corresponding to the interaction of the first and the second FWM processes under the pump undepleted approximation ĉψc can be written by [39]:

H^1=iζ1ψc12b^1a^1+h.c.,
H^2=iζ2ψc22b^2a^2+h.c..
From equation (1), the time evolution of the first FWM process is given by:
a^1(t)=G1a^0+G11v^0,
b^1(t)=G1v^0+G11a^0.
From Eq. (2), the time evolution of the second FWM process is given by:
a^2(t)=G2a^1+G21v^0,
b^2(t)=G2v^0+G21a^1.

Here 0 and v̂′0 are the vacuum states of conjugate inputs for the first and second FWM processes respectively. G1=cosh(ζ1ψc12t) and G2=cosh(ζ2ψc22t) are the intensity gains of the first and second FWM processes respectively which depend on the strength of the interaction. The strength of the FWM interaction depends on the system parameters, such as the temperature of the Rb vapor, the single-photon detuning, the two-photon detuning and the pump intensity. From Eqs. (3)(6), the input-output relation of the cascaded FWM processes in Fig. 1(a) can be written as:

(a^2(t)b^2(t)b^1(t))=(G1G2(G11)G2G21G1(G11)(G11)(G21)G2G11G10)(a^0v^0v^0).

Generally the annihilation operators of the output fields â2(t), 2(t) and 1(t) can be written as â2(t) = 〈â2(t)〉 + δâ2(t), 2(t) = 〈2(t)〉 + δb̂2(t) and 1(t) = 〈1(t)〉 + δb̂1(t), where 〈â2(t)〉, 〈2(t)〉 and 〈1(t)〉 are the average terms and δâ2(t), δb̂2(t) and δb̂1(t) are the noise terms. In fact, these noise terms in the form of variances are very important for our following calculations of quantum steering.

Then, we give the optical quadrature definitions in our analysis, as the criteria will depend on these quadratures. The amplitude and phase quadrature operators of the fields are defined by

X^i=12(Q^i+Q^i),Y^i=i2(Q^iQ^i).

3. Bipartite steering

Now, let us investigate the possibilities for the existence of bipartite steering in our cascaded FWM scheme. Using our quadrature definitions above, we can calculate the following formulas

Stij=Δinf(X^ij)Δinf(Y^ij),
Stij<12 implies steering ÔjÔi. That means the existence of bipartite steering can be confirmed if Stij<12. Here Δinf (ij) and Δinf(Ŷij) are the uncertainty in the prediction of amplitude quadrature i and phase quadrature Ŷi of one light beam Ôi based on measurement of the other light beam Ôj. They are given by
Δinf(X^ij)=Δ(X^i+gopt,X^jX^j),
Δinf(Y^ij)=Δ(Y^i+gopt,Y^jY^j).

Here gopt,j and gopt,Ŷj are optimized real numbers which can minimize the average uncertainty of the inferences and thus increase the steerability [9]. It should be noted that here we only consider the XiXj and YiYj combinations in our calculations instead of the XiYj and YiXj combinations. This is actually due to that there only exist XiXj and YiYj quantum correlation instead of XiYj and YiXj quantum correlation for our scheme. Such XiYj and YiXj type of quantum steering must be considered for some special types of quantum states, such as cluster state [40,41]. As shown in Fig. 2, the St12, St21, St13, St31, St23 and St32 are plotted as a function of the intensity gains G1 and G2 of our cascaded scheme. For only partial regions as shown in Figs. 2(a) and 2(c), the values St12 and St13 are less than 12. It implies that the amplitude quadrature and phase quadrature of the output beam Ô1 is highly correlated with the other output beams Ô2 and Ô3 in the partial regions of the G1 and G2. More interestingly, these two partial regions are not overlapped with each other, meaning that these two bipartite steering can not happen at the same time. In this sense, we could name this phenomenon as repulsion effect of quantum steering. This phenomenon can be explained as follows. The repulsion effect is actually the result of the competition between the positive mechanism and negative mechanism. As shown in Fig. 1(a), firstly, for the steering between beams Ô1 and Ô3, obviously, the first Rb vapor cell will provide the steering for Ô3Ô1 and the second Rb vapor cell will destroy this quantum steering by adding extra vacuum noise, thus these two Rb vapor cells can be viewed as the positive mechanism provider and negative mechanism provider respectively. Therefore, the larger G1 and smaller G2 are preferred for the steering of Ô3Ô1. Secondly, for the case of the steering for Ô2Ô1, the first Rb vapor cell will generate a thermal state which will destroy their quantum steering by adding extra vacuum noise into the system while the second Rb vapor cell will make them quantum correlated through the FWM process. In this case, these two Rb vapor cells can also be viewed as the negative mechanism provider and positive mechanism provider respectively. Therefore the smaller G1 and larger G2 are preferred for the steering for Ô2Ô1. Finally, the completely opposite dependence of the steering for Ô3Ô1 and the steering for Ô2Ô1 on the gains leads to the repulsion effect between the steering of certain pairs. The values St21 and St31 for the whole gain region are less than 12 as shown in Figs. 2(b) and 2(d), which implies that the amplitude quadrature and phase quadrature of the output beam Ô2 and Ô3 are highly correlated with the other output beam Ô1 for the whole gain region of the intensity gains G1 and G2. In other words, beam Ô1 can steer both beam Ô2 and beam Ô3 for the whole gain region. This is mainly due to that beam Ô1 is involved in both of the two FWM processes and therefore Ô1 includes photons which are correlated with both Ô2 and Ô3. The values St23 and St32 of the whole gain region is lager than 12 as shown in Figs. 2(e) and 2(f), which implies that there is no bipartite steering between the output beams Ô2 and Ô3. This is due to that beams Ô2 and Ô3 have never interacted with each other directly, therefore it is impossible to build quantum correlation between these two beams, let alone the existence of quantum steering.

 figure: Fig. 2

Fig. 2 The values of St12 (a), St21 (b), St13 (c), St31 (d), St23 (e) and St32 (f) through equations (25) vary with G1 and G2.

Download Full Size | PPT Slide | PDF

As shown in Fig. 3, based on the above results, we can also plot the mutual relations of the output beams Ô1, Ô2 and Ô3 in terms of their possibilities of bipartite quantum steering. Bipartite steering across Ô1Ô2 and Ô1Ô3 always exist in the whole gain region of the intensity gains. Therefore, we can name the bipartite steering across Ô1Ô2 and Ô1Ô3 as deterministic quantum steering as show in the Fig. 3. And the bipartite steering across Ô2Ô3 and Ô3Ô2 doesn’t exist for the whole intensity gain region. The bipartite steering across Ô2Ô1 and Ô3Ô1 can happen in some regions. And more interestingly, these two regions for steering across Ô2Ô1 and Ô3Ô1 is always mutually exclusive. In this sense, we can name the bipartite steering across Ô2Ô1 and Ô3Ô1 as conditional quantum steering. The hierarchical steering model among the output beams Ô1, Ô2 and Ô3 is interesting and can be used for the hierarchical quantum secret sharing among them.

 figure: Fig. 3

Fig. 3 The mutual hierarchical relations of the bipartite steering among the output beams Ô1, Ô2 and Ô3.

Download Full Size | PPT Slide | PDF

4. Genuine tripartite steering

Further, due to the importance of multipartite steering for understanding entanglement distribution and constructing quantum networks, we investigate the possibilities of the existence of genuine multipartite steering in the cascaded FWM scheme. To confirm genuine tripartite steering, let us calculate the following formulas

Stijk=Δinf(X^ijk)Δinf(Y^ijk).
Stijk<12 implies two-party steering across ÔjÔkÔi. Here Δinf (ijk) and Δinf (Ŷijk) are the uncertainty in the prediction of amplitude quadrature i and phase quadrature Ŷi of one light beam Ôi based on measurements of the other two light beam Ôj and Ôk, and they are given by
Δinf(X^ijk)=Δ(X^i+gopt,X^jX^j+gopt,X^kX^k)
Δinf(Y^ijk)=Δ(Y^i+gopt,Y^jY^j+gopt,X^kX^k)
Here gopt,j, gopt,Ŷj, gopt,Ŷk and gopt,Ŷk are optimized real numbers. Then, the existence of genuine tripartite steering can be confirmed if Stijk+Stjik+Stkij<12 [7]. As shown in Fig. 4, the St123, St213, St312 and St123 + St213 + St312 are plotted as a function of the intensity gains G1 and G2 in the cascaded scheme. The values of St123, St213 and St312 in the whole gain region are less than 12 as shown in Figs. 4(a)–4(c), which implies that the amplitude quadrature and phase quadrature of any one of the output beams is highly correlated with the combination of the other two output beams. In other words, the combination of any two of the three output beams can steer the other beam within the whole gain region. The contour plot of St123 + St213 + St312 is shown in Fig. 4(d), the value of St123 + St213 + St312 is less than 12 for most of the whole gain region, which corresponds to the existence of genuine tripartite steering in the cascaded system.

 figure: Fig. 4

Fig. 4 The values of St123 (a), St213 (b), St312 (c) in equation (2, 68) and St123+St213+St312 (d) vary with G1 and G2.

Download Full Size | PPT Slide | PDF

For practical applications, the losses are unavoidable. Therefore, it is necessary to consider how the losses in the cascaded system affect the performance of the quantum steering. For simplicity, we only focus on the losses due to imperfect optical propagation and detection efficiency. The losses can be modeled by a beam splitter with an empty port whose output state is a combination of the input and vacuum modes. Denoting the vacuum modes introduced by losses on the probe and conjugate by the annihilation operators i (i=1–4) respectively, the standard beam-splitter input-output relations give

a^1(t)η1a^1+1η1ν^1,
b^1(t)η2b^2+1η2ν^2,
a^2(t)η3a^2+1η3ν^3,
b^2(t)η4b^2+1η4ν^2.

Here η1, η2, η3 and η4 are the transmission ratios of the light beams intensities due to the imperfect optical propagation and detection efficiency. For simplicity, we consider all the transmission ratios η1, η2, η3, η4 as η. The contour plots of St123 + St213 + St312 with η = 0.95 and η = 0.92 are shown in Figs. 5(a) and 5(b), respectively. We can see that they could be less than 12 in some gain region, but this region is smaller than the one without considering the losses. And we find that the larger the losses are, the smaller the gain region in which the genuine tripartite steering exists is. Therefore, for real applications, it is important to optimize the optical propagation paths and improve the detection efficiency of the photodiode.

 figure: Fig. 5

Fig. 5 The value of St123 + St213 + St312 vary with G1 and G2 when we consider losses due to imperfect optical transmission and detection efficiency.

Download Full Size | PPT Slide | PDF

5. Conclusion

In summary, we have investigated the bipartite steering among the three output beams of cascaded FWM process. We have found that their steering relations are hierarchical. Among them, one can steer the other two beams in the whole gain region. And the other two beams can steer the first one only in a partial gain region. More interestingly, they can not steer the first one at the same time. The other two beams can not steer with each other. Therefore, not all the possible bipartite steerings happen for the whole gain region. This is mainly due to the asymmetric structure of our cascade FWM process itself which directly leads to the asymmetric roles of the generated three beams. Such unbalanced bipartite steerings are actually useful for secure quantum communication in which participants should have different levels of authorities for secure purposes. In this sense, such unbalanced bipartite steering structure is also unique for our system and may be taken as advantages in practical quantum communications, for example, hierarchical quantum secret sharing. These results may be applied to hierarchical quantum secret sharing. More importantly, we have theoretically predicted that the cascaded FWM processes can generate genuine tripartite steering. And the genuine tripartite steering exists in our cascaded FWM system for most of the whole gain in the ideal case without considering the optical losses. We have also studied how the optical losses affect the performance of the genuine tripartite steering. We found that the larger the losses are, the smaller the gain region in which the genuine tripartite steering exists is. Our results here pave the way to experimental demonstration the quantum steering in cascaded FWM system.

Funding

This work was supported by the National Natural Science Foundation of China (91436211, 11374104, 10974057); Natural Science Foundation of Shanghai (17ZR1442900). the SRFDP (20130076110011); the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University (NCET-10-0383); the Shu Guang project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (11SG26); the Shanghai Pujiang Program (09PJ1404400); the Scientific Research Foundation of the Returned Overseas Chinese Scholars, State Education Ministry; National Basic Research Program of China (2016YFA0302103); Program of Introducing Talents of Discipline to Universities (B12024); and Program of State Key Laboratory of Advanced Optical Communication Systems and Networks (2016GZKF0JT003).

References and links

1. M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. , 81, 1727–1751 (2009). [CrossRef]  

2. D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using Bell-local states,” Nature Phys. , 6, 845–849 (2010). [CrossRef]  

3. D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012). [CrossRef]  

4. B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012). [CrossRef]  

5. A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).

6. Q. Y. He and Z. Ficek, “EPR paradox and quantum steering in a three-mode optomechanical system,” Physical Review A , 89(2), 74–79 (2014). [CrossRef]  

7. Q. Y. He and M. D. Reid, “Genuine Multipartite Einstein-Podolsky-Rosen Steering,” Phys. Rev. Lett. 111, 250403 (2013). [CrossRef]  

8. H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023 (2008). [CrossRef]  

9. S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015). [CrossRef]  

10. M. Wang, Q. H. Gong, and Q. Y. He, “Collective multipartite Einstein-Podolsky-Rosen steering: more secure optical networks,” Opt. Lett. 39, 6703–6706 (2014). [CrossRef]   [PubMed]  

11. M. Wang, Q. H. Gong, Z. Ficek, and Q. Y. He, “Efficient scheme for perfect collective Einstein-Podolsky-Rosen steering,” Sci. Rep. 5, 12346 (2015). [CrossRef]   [PubMed]  

12. Y. Xiang, F. X. Sun, M. Wang, Q. H. Gong, and Q. Y. He, “Detection of genuine tripartite entanglement and steering in hybrid optomechanics,” Opt. Express 23, 30104–30117 (2015). [CrossRef]   [PubMed]  

13. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178 (2007). [CrossRef]  

14. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from Four-Wave Mixing,” Science 321, 544 (2008). [CrossRef]   [PubMed]  

15. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable Delay of Einstein-Podolsky-Rosen Entanglement,” Nature 457, 859 (2009). [CrossRef]   [PubMed]  

16. J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011). [CrossRef]  

17. J. Kong, J. Jing, H. Wang, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013). [CrossRef]  

18. F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014). [CrossRef]   [PubMed]  

19. J. M. Lukens, N. A. Peters, and R. C. Pooser, “Naturally stable Sagnac-Michelson nonlinear interferometer,” Opt. Lett. 41, 5438 (2016). [CrossRef]   [PubMed]  

20. J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016). [CrossRef]  

21. A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109, 033601 (2012). [CrossRef]   [PubMed]  

22. R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393 (2015). [CrossRef]  

23. C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).

24. Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental generation of multiple quantum correlated beams from hot rubidium vapor,” Phys. Rev. Lett. 113, 023602 (2014). [CrossRef]   [PubMed]  

25. N. V. Corzo, Quentin Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett., “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88, 043836 (2013). [CrossRef]  

26. N. Otterstrom, R. C. Pooser, and B. J. Lawrie, “Nonlinear optical magnetometry with accessible in situ optical squeezing,” Opt. Lett. 39, 6533 (2014). [CrossRef]   [PubMed]  

27. M. W. Holtfrerich, M. Dowran, R. Davidson, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985 (2016). [CrossRef]  

28. R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phy. Rev. Lett. 108, 173902 (2012). [CrossRef]  

29. Ryan M. Camacho, Praveen K. Vudyasetu, and John C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009). [CrossRef]  

30. N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phy. Rev. Lett. 109, 043602 (2012). [CrossRef]  

31. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413 (2001). [CrossRef]  

32. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005). [CrossRef]  

33. M. Kafatos, Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Springer1989). [CrossRef]  

34. C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012). [CrossRef]  

35. M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003). [CrossRef]  

36. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012). [CrossRef]  

37. R. Pooser and J. Jing, “Continuous variable cluster state generation over the optical spatial mode comb,” Phys. Rev. A 90, 043841 (2014). [CrossRef]  

38. Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015). [CrossRef]  

39. M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Optics Express 19(4), 3765–3774 (2011). [CrossRef]   [PubMed]  

40. J. Zhang and S. L. Braunstein, “Contunuous-variable Gaussian analog of cluster state,” Phys. Rev. A 73, 032318 (2006). [CrossRef]  

41. X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017). [CrossRef]   [PubMed]  

References

  • View by:

  1. M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
    [Crossref]
  2. D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using Bell-local states,” Nature Phys.,  6, 845–849 (2010).
    [Crossref]
  3. D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
    [Crossref]
  4. B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
    [Crossref]
  5. A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).
  6. Q. Y. He and Z. Ficek, “EPR paradox and quantum steering in a three-mode optomechanical system,” Physical Review A,  89(2), 74–79 (2014).
    [Crossref]
  7. Q. Y. He and M. D. Reid, “Genuine Multipartite Einstein-Podolsky-Rosen Steering,” Phys. Rev. Lett. 111, 250403 (2013).
    [Crossref]
  8. H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023 (2008).
    [Crossref]
  9. S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
    [Crossref]
  10. M. Wang, Q. H. Gong, and Q. Y. He, “Collective multipartite Einstein-Podolsky-Rosen steering: more secure optical networks,” Opt. Lett. 39, 6703–6706 (2014).
    [Crossref] [PubMed]
  11. M. Wang, Q. H. Gong, Z. Ficek, and Q. Y. He, “Efficient scheme for perfect collective Einstein-Podolsky-Rosen steering,” Sci. Rep. 5, 12346 (2015).
    [Crossref] [PubMed]
  12. Y. Xiang, F. X. Sun, M. Wang, Q. H. Gong, and Q. Y. He, “Detection of genuine tripartite entanglement and steering in hybrid optomechanics,” Opt. Express 23, 30104–30117 (2015).
    [Crossref] [PubMed]
  13. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178 (2007).
    [Crossref]
  14. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from Four-Wave Mixing,” Science 321, 544 (2008).
    [Crossref] [PubMed]
  15. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable Delay of Einstein-Podolsky-Rosen Entanglement,” Nature 457, 859 (2009).
    [Crossref] [PubMed]
  16. J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
    [Crossref]
  17. J. Kong, J. Jing, H. Wang, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
    [Crossref]
  18. F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
    [Crossref] [PubMed]
  19. J. M. Lukens, N. A. Peters, and R. C. Pooser, “Naturally stable Sagnac-Michelson nonlinear interferometer,” Opt. Lett. 41, 5438 (2016).
    [Crossref] [PubMed]
  20. J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
    [Crossref]
  21. A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109, 033601 (2012).
    [Crossref] [PubMed]
  22. R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393 (2015).
    [Crossref]
  23. C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).
  24. Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental generation of multiple quantum correlated beams from hot rubidium vapor,” Phys. Rev. Lett. 113, 023602 (2014).
    [Crossref] [PubMed]
  25. N. V. Corzo, Quentin Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett., “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88, 043836 (2013).
    [Crossref]
  26. N. Otterstrom, R. C. Pooser, and B. J. Lawrie, “Nonlinear optical magnetometry with accessible in situ optical squeezing,” Opt. Lett. 39, 6533 (2014).
    [Crossref] [PubMed]
  27. M. W. Holtfrerich, M. Dowran, R. Davidson, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985 (2016).
    [Crossref]
  28. R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phy. Rev. Lett. 108, 173902 (2012).
    [Crossref]
  29. Ryan M. Camacho, Praveen K. Vudyasetu, and John C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
    [Crossref]
  30. N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phy. Rev. Lett. 109, 043602 (2012).
    [Crossref]
  31. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413 (2001).
    [Crossref]
  32. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
    [Crossref]
  33. M. Kafatos, Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Springer1989).
    [Crossref]
  34. C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
    [Crossref]
  35. M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003).
    [Crossref]
  36. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
    [Crossref]
  37. R. Pooser and J. Jing, “Continuous variable cluster state generation over the optical spatial mode comb,” Phys. Rev. A 90, 043841 (2014).
    [Crossref]
  38. Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015).
    [Crossref]
  39. M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Optics Express 19(4), 3765–3774 (2011).
    [Crossref] [PubMed]
  40. J. Zhang and S. L. Braunstein, “Contunuous-variable Gaussian analog of cluster state,” Phys. Rev. A 73, 032318 (2006).
    [Crossref]
  41. X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
    [Crossref] [PubMed]

2017 (1)

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (6)

R. C. Pooser and B. Lawrie, “Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,” Optica 2, 393 (2015).
[Crossref]

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).

Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015).
[Crossref]

M. Wang, Q. H. Gong, Z. Ficek, and Q. Y. He, “Efficient scheme for perfect collective Einstein-Podolsky-Rosen steering,” Sci. Rep. 5, 12346 (2015).
[Crossref] [PubMed]

Y. Xiang, F. X. Sun, M. Wang, Q. H. Gong, and Q. Y. He, “Detection of genuine tripartite entanglement and steering in hybrid optomechanics,” Opt. Express 23, 30104–30117 (2015).
[Crossref] [PubMed]

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

2014 (6)

M. Wang, Q. H. Gong, and Q. Y. He, “Collective multipartite Einstein-Podolsky-Rosen steering: more secure optical networks,” Opt. Lett. 39, 6703–6706 (2014).
[Crossref] [PubMed]

Q. Y. He and Z. Ficek, “EPR paradox and quantum steering in a three-mode optomechanical system,” Physical Review A,  89(2), 74–79 (2014).
[Crossref]

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental generation of multiple quantum correlated beams from hot rubidium vapor,” Phys. Rev. Lett. 113, 023602 (2014).
[Crossref] [PubMed]

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

N. Otterstrom, R. C. Pooser, and B. J. Lawrie, “Nonlinear optical magnetometry with accessible in situ optical squeezing,” Opt. Lett. 39, 6533 (2014).
[Crossref] [PubMed]

R. Pooser and J. Jing, “Continuous variable cluster state generation over the optical spatial mode comb,” Phys. Rev. A 90, 043841 (2014).
[Crossref]

2013 (3)

N. V. Corzo, Quentin Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett., “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88, 043836 (2013).
[Crossref]

Q. Y. He and M. D. Reid, “Genuine Multipartite Einstein-Podolsky-Rosen Steering,” Phys. Rev. Lett. 111, 250403 (2013).
[Crossref]

J. Kong, J. Jing, H. Wang, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

2012 (8)

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phy. Rev. Lett. 108, 173902 (2012).
[Crossref]

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phy. Rev. Lett. 109, 043602 (2012).
[Crossref]

C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

2011 (2)

M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Optics Express 19(4), 3765–3774 (2011).
[Crossref] [PubMed]

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

2010 (1)

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using Bell-local states,” Nature Phys.,  6, 845–849 (2010).
[Crossref]

2009 (3)

M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
[Crossref]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable Delay of Einstein-Podolsky-Rosen Entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

Ryan M. Camacho, Praveen K. Vudyasetu, and John C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
[Crossref]

2008 (2)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023 (2008).
[Crossref]

2007 (1)

2006 (1)

J. Zhang and S. L. Braunstein, “Contunuous-variable Gaussian analog of cluster state,” Phys. Rev. A 73, 032318 (2006).
[Crossref]

2005 (1)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
[Crossref]

2003 (1)

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003).
[Crossref]

2001 (1)

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413 (2001).
[Crossref]

Achal, R.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Adesso, G.

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

Andersen, U. L.

M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
[Crossref]

Arimondo, E.

Armstrong, S.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

Bachor, H. A.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
[Crossref]

Bennet, A.

A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).

Bowen, W. P.

M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
[Crossref]

Boyer, V.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable Delay of Einstein-Podolsky-Rosen Entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178 (2007).
[Crossref]

Branciard, C.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).

Brannan, T.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Braunstein, S. L.

J. Zhang and S. L. Braunstein, “Contunuous-variable Gaussian analog of cluster state,” Phys. Rev. A 73, 032318 (2006).
[Crossref]

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
[Crossref]

Brunner, N.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Cai, Y.

Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015).
[Crossref]

Calkins, B.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

Camacho, Ryan M.

Ryan M. Camacho, Praveen K. Vudyasetu, and John C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
[Crossref]

Cao, L.

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental generation of multiple quantum correlated beams from hot rubidium vapor,” Phys. Rev. Lett. 113, 023602 (2014).
[Crossref] [PubMed]

Cavalcanti, E.

A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).

Cavalcanti, E. G.

M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
[Crossref]

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Chen, Z. B.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413 (2001).
[Crossref]

Clark, J. B.

N. V. Corzo, Quentin Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett., “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88, 043836 (2013).
[Crossref]

Corzo, N. V.

N. V. Corzo, Quentin Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett., “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88, 043836 (2013).
[Crossref]

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phy. Rev. Lett. 109, 043602 (2012).
[Crossref]

Davidson, R.

de Almeida, M.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

Deng, X.

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

Dowran, M.

Drummond, P. D.

M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
[Crossref]

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413 (2001).
[Crossref]

Embrey, C. S.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).

Evans, D. A.

A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).

Fedrizzi, A.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

Feng, J.

Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015).
[Crossref]

Ferrini, G.

Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015).
[Crossref]

Ficek, Z.

M. Wang, Q. H. Gong, Z. Ficek, and Q. Y. He, “Efficient scheme for perfect collective Einstein-Podolsky-Rosen steering,” Sci. Rep. 5, 12346 (2015).
[Crossref] [PubMed]

Q. Y. He and Z. Ficek, “EPR paradox and quantum steering in a three-mode optomechanical system,” Physical Review A,  89(2), 74–79 (2014).
[Crossref]

Gerrits, T.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

Gillett, G.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

Glasser, R. T.

N. V. Corzo, Quentin Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett., “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88, 043836 (2013).
[Crossref]

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phy. Rev. Lett. 108, 173902 (2012).
[Crossref]

Glorieux, Quentin

N. V. Corzo, Quentin Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett., “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88, 043836 (2013).
[Crossref]

Gong, Q.

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

Gong, Q. H.

He, Q.

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

He, Q. Y.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

Y. Xiang, F. X. Sun, M. Wang, Q. H. Gong, and Q. Y. He, “Detection of genuine tripartite entanglement and steering in hybrid optomechanics,” Opt. Express 23, 30104–30117 (2015).
[Crossref] [PubMed]

M. Wang, Q. H. Gong, Z. Ficek, and Q. Y. He, “Efficient scheme for perfect collective Einstein-Podolsky-Rosen steering,” Sci. Rep. 5, 12346 (2015).
[Crossref] [PubMed]

M. Wang, Q. H. Gong, and Q. Y. He, “Collective multipartite Einstein-Podolsky-Rosen steering: more secure optical networks,” Opt. Lett. 39, 6703–6706 (2014).
[Crossref] [PubMed]

Q. Y. He and Z. Ficek, “EPR paradox and quantum steering in a three-mode optomechanical system,” Physical Review A,  89(2), 74–79 (2014).
[Crossref]

Q. Y. He and M. D. Reid, “Genuine Multipartite Einstein-Podolsky-Rosen Steering,” Phys. Rev. Lett. 111, 250403 (2013).
[Crossref]

Holtfrerich, M. W.

Howell, John C.

Ryan M. Camacho, Praveen K. Vudyasetu, and John C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
[Crossref]

Hudelist, F.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

Janousek, J.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

Jasperse, M.

M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Optics Express 19(4), 3765–3774 (2011).
[Crossref] [PubMed]

Jing, J.

J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015).
[Crossref]

R. Pooser and J. Jing, “Continuous variable cluster state generation over the optical spatial mode comb,” Phys. Rev. A 90, 043841 (2014).
[Crossref]

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental generation of multiple quantum correlated beams from hot rubidium vapor,” Phys. Rev. Lett. 113, 023602 (2014).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Jones, K. M.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phy. Rev. Lett. 109, 043602 (2012).
[Crossref]

Jones, S. J.

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using Bell-local states,” Nature Phys.,  6, 845–849 (2010).
[Crossref]

Kafatos, M.

M. Kafatos, Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Springer1989).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023 (2008).
[Crossref]

Kong, J.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

Lam, P. K.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
[Crossref]

Langford, N. K.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Lawrie, B.

Lawrie, B. J.

Lett, P. D.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phy. Rev. Lett. 109, 043602 (2012).
[Crossref]

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phy. Rev. Lett. 108, 173902 (2012).
[Crossref]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable Delay of Einstein-Podolsky-Rosen Entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178 (2007).
[Crossref]

Lett., P. D.

N. V. Corzo, Quentin Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett., “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88, 043836 (2013).
[Crossref]

Leuchs, G.

M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
[Crossref]

Lita, A.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

Liu, C.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Lu, C. Y.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

Lukens, J. M.

Lukin, M. D.

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413 (2001).
[Crossref]

Lvovsky, A. I.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

MacRae, A.

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Marino, A. M.

M. W. Holtfrerich, M. Dowran, R. Davidson, B. J. Lawrie, R. C. Pooser, and A. M. Marino, “Toward quantum plasmonic networks,” Optica 3, 985 (2016).
[Crossref]

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental generation of multiple quantum correlated beams from hot rubidium vapor,” Phys. Rev. Lett. 113, 023602 (2014).
[Crossref] [PubMed]

N. V. Corzo, Quentin Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett., “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88, 043836 (2013).
[Crossref]

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phy. Rev. Lett. 109, 043602 (2012).
[Crossref]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable Delay of Einstein-Podolsky-Rosen Entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

McCormick, C. F.

Nam, S. W.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

Otterstrom, N.

Ou, Z. Y.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Pan, J. W.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

Patron, R. G.

C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Peng, K.

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

Peters, N. A.

Petrov, P. G.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).

Pirandola, S.

C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Pooser, R.

R. Pooser and J. Jing, “Continuous variable cluster state generation over the optical spatial mode comb,” Phys. Rev. A 90, 043841 (2014).
[Crossref]

Pooser, R. C.

Pryde, G. J.

A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using Bell-local states,” Nature Phys.,  6, 845–849 (2010).
[Crossref]

Qin, Z.

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental generation of multiple quantum correlated beams from hot rubidium vapor,” Phys. Rev. Lett. 113, 023602 (2014).
[Crossref] [PubMed]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Ramelow, S.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Reid, M. D.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

Q. Y. He and M. D. Reid, “Genuine Multipartite Einstein-Podolsky-Rosen Steering,” Phys. Rev. Lett. 111, 250403 (2013).
[Crossref]

M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
[Crossref]

Saunders, D. J.

A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using Bell-local states,” Nature Phys.,  6, 845–849 (2010).
[Crossref]

Scholten, R. E.

M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Optics Express 19(4), 3765–3774 (2011).
[Crossref] [PubMed]

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Smith, D. H.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

Steinlechner, F.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Su, X.

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

Sun, F. X.

Teh, R. Y.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

Tian, C.

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

Treps, N.

Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015).
[Crossref]

Turnbull, M. T.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).

Turner, L. D.

M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Optics Express 19(4), 3765–3774 (2011).
[Crossref] [PubMed]

Ursin, R.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

van Loock, P.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
[Crossref]

Vogl, U.

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phy. Rev. Lett. 108, 173902 (2012).
[Crossref]

Vudyasetu, Praveen K.

Ryan M. Camacho, Praveen K. Vudyasetu, and John C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
[Crossref]

Wang, H.

J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015).
[Crossref]

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental generation of multiple quantum correlated beams from hot rubidium vapor,” Phys. Rev. Lett. 113, 023602 (2014).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

Wang, M.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

M. Wang, Q. H. Gong, Z. Ficek, and Q. Y. He, “Efficient scheme for perfect collective Einstein-Podolsky-Rosen steering,” Sci. Rep. 5, 12346 (2015).
[Crossref] [PubMed]

Y. Xiang, F. X. Sun, M. Wang, Q. H. Gong, and Q. Y. He, “Detection of genuine tripartite entanglement and steering in hybrid optomechanics,” Opt. Express 23, 30104–30117 (2015).
[Crossref] [PubMed]

M. Wang, Q. H. Gong, and Q. Y. He, “Collective multipartite Einstein-Podolsky-Rosen steering: more secure optical networks,” Opt. Lett. 39, 6703–6706 (2014).
[Crossref] [PubMed]

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Weinfurter, H.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

Weinhold, T. J.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

White, A. G.

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

Wiseman, H.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Wiseman, H. M.

A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using Bell-local states,” Nature Phys.,  6, 845–849 (2010).
[Crossref]

Wittmann, B.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Xiang, Y.

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

Y. Xiang, F. X. Sun, M. Wang, Q. H. Gong, and Q. Y. He, “Detection of genuine tripartite entanglement and steering in hybrid optomechanics,” Opt. Express 23, 30104–30117 (2015).
[Crossref] [PubMed]

Xie, C.

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

Xin, J.

J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

Xu, X.

Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015).
[Crossref]

Zeilinger, A.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Zhang, J.

J. Zhang and S. L. Braunstein, “Contunuous-variable Gaussian analog of cluster state,” Phys. Rev. A 73, 032318 (2006).
[Crossref]

Zhang, W.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental generation of multiple quantum correlated beams from hot rubidium vapor,” Phys. Rev. Lett. 113, 023602 (2014).
[Crossref] [PubMed]

J. Kong, J. Jing, H. Wang, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Zhou, Z.

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413 (2001).
[Crossref]

Zukowski, M.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

Appl. Phys. Lett. (3)

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, “Realization of a nonlinear interferometer with parametric amplifiers,” Appl. Phys. Lett. 99, 011110 (2011).
[Crossref]

J. Kong, J. Jing, H. Wang, C. Liu, and W. Zhang, “Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers,” Appl. Phys. Lett. 102, 011130 (2013).
[Crossref]

J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer,” Appl. Phys. Lett. 109, 051107 (2016).
[Crossref]

Nat. Commun. (1)

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5, 3049 (2014).
[Crossref] [PubMed]

Nat. Phys. (1)

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. Y. He, J. Janousek, H. A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167 (2015).
[Crossref]

Nature (1)

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable Delay of Einstein-Podolsky-Rosen Entanglement,” Nature 457, 859 (2009).
[Crossref] [PubMed]

Nature (London) (2)

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413 (2001).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023 (2008).
[Crossref]

Nature Commun. (1)

D. H. Smith, G. Gillett, M. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Commun. 3, 625 (2012).
[Crossref]

Nature Photon. (1)

Ryan M. Camacho, Praveen K. Vudyasetu, and John C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
[Crossref]

Nature Phys. (1)

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using Bell-local states,” Nature Phys.,  6, 845–849 (2010).
[Crossref]

New J. Phys. (1)

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. Wiseman, R. Ursin, and A. Zeilinger, “A. Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Optica (2)

Optics Express (1)

M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Optics Express 19(4), 3765–3774 (2011).
[Crossref] [PubMed]

Phy. Rev. Lett. (2)

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phy. Rev. Lett. 108, 173902 (2012).
[Crossref]

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phy. Rev. Lett. 109, 043602 (2012).
[Crossref]

Phys. Rev. A (4)

R. Pooser and J. Jing, “Continuous variable cluster state generation over the optical spatial mode comb,” Phys. Rev. A 90, 043841 (2014).
[Crossref]

Y. Cai, J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A 91, 013843 (2015).
[Crossref]

J. Zhang and S. L. Braunstein, “Contunuous-variable Gaussian analog of cluster state,” Phys. Rev. A 73, 032318 (2006).
[Crossref]

N. V. Corzo, Quentin Glorieux, A. M. Marino, J. B. Clark, R. T. Glasser, and P. D. Lett., “Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing,” Phys. Rev. A 88, 043836 (2013).
[Crossref]

Phys. Rev. Lett (1)

X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” Phys. Rev. Lett 118, 230501 (2017).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental generation of multiple quantum correlated beams from hot rubidium vapor,” Phys. Rev. Lett. 113, 023602 (2014).
[Crossref] [PubMed]

A. MacRae, T. Brannan, R. Achal, and A. I. Lvovsky, “Tomography of a high-purity narrowband photon from a transient atomic collective excitation,” Phys. Rev. Lett. 109, 033601 (2012).
[Crossref] [PubMed]

Q. Y. He and M. D. Reid, “Genuine Multipartite Einstein-Podolsky-Rosen Steering,” Phys. Rev. Lett. 111, 250403 (2013).
[Crossref]

Phys. Rev. X (2)

A. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X 2, 031003 (2012).

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).

Physical Review A (1)

Q. Y. He and Z. Ficek, “EPR paradox and quantum steering in a three-mode optomechanical system,” Physical Review A,  89(2), 74–79 (2014).
[Crossref]

Rev. Mod. Phys. (5)

M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys.,  81, 1727–1751 (2009).
[Crossref]

C. Weedbrook, S. Pirandola, R. G. Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457 (2003).
[Crossref]

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777 (2012).
[Crossref]

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
[Crossref]

Sci. Rep. (1)

M. Wang, Q. H. Gong, Z. Ficek, and Q. Y. He, “Efficient scheme for perfect collective Einstein-Podolsky-Rosen steering,” Sci. Rep. 5, 12346 (2015).
[Crossref] [PubMed]

Science (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from Four-Wave Mixing,” Science 321, 544 (2008).
[Crossref] [PubMed]

Other (1)

M. Kafatos, Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Springer1989).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Cascaded FWM processes in hot Rb vapor. (a) Double-λ energy level of Rb D1 line: Δ and δ stand for the one-photon detuning and the two-photon detuning respectively. The interaction strength depends strongly on the one-photon detuning Δ and the two-photon detuning δ. (b) The cascaded FWM scheme.
Fig. 2
Fig. 2 The values of St12 (a), St21 (b), St13 (c), St31 (d), St23 (e) and St32 (f) through equations (25) vary with G1 and G2.
Fig. 3
Fig. 3 The mutual hierarchical relations of the bipartite steering among the output beams Ô1, Ô2 and Ô3.
Fig. 4
Fig. 4 The values of St123 (a), St213 (b), St312 (c) in equation (2, 68) and St123+St213+St312 (d) vary with G1 and G2.
Fig. 5
Fig. 5 The value of St123 + St213 + St312 vary with G1 and G2 when we consider losses due to imperfect optical transmission and detection efficiency.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

H ^ 1 = i ζ 1 ψ c 1 2 b ^ 1 a ^ 1 + h . c . ,
H ^ 2 = i ζ 2 ψ c 2 2 b ^ 2 a ^ 2 + h . c . .
a ^ 1 ( t ) = G 1 a ^ 0 + G 1 1 v ^ 0 ,
b ^ 1 ( t ) = G 1 v ^ 0 + G 1 1 a ^ 0 .
a ^ 2 ( t ) = G 2 a ^ 1 + G 2 1 v ^ 0 ,
b ^ 2 ( t ) = G 2 v ^ 0 + G 2 1 a ^ 1 .
( a ^ 2 ( t ) b ^ 2 ( t ) b ^ 1 ( t ) ) = ( G 1 G 2 ( G 1 1 ) G 2 G 2 1 G 1 ( G 1 1 ) ( G 1 1 ) ( G 2 1 ) G 2 G 1 1 G 1 0 ) ( a ^ 0 v ^ 0 v ^ 0 ) .
X ^ i = 1 2 ( Q ^ i + Q ^ i ) , Y ^ i = i 2 ( Q ^ i Q ^ i ) .
St i j = Δ inf ( X ^ i j ) Δ inf ( Y ^ i j ) ,
Δ inf ( X ^ i j ) = Δ ( X ^ i + g o p t , X ^ j X ^ j ) ,
Δ inf ( Y ^ i j ) = Δ ( Y ^ i + g o p t , Y ^ j Y ^ j ) .
St i j k = Δ inf ( X ^ i j k ) Δ inf ( Y ^ i j k ) .
Δ inf ( X ^ i j k ) = Δ ( X ^ i + g o p t , X ^ j X ^ j + g o p t , X ^ k X ^ k )
Δ inf ( Y ^ i j k ) = Δ ( Y ^ i + g o p t , Y ^ j Y ^ j + g o p t , X ^ k X ^ k )
a ^ 1 ( t ) η 1 a ^ 1 + 1 η 1 ν ^ 1 ,
b ^ 1 ( t ) η 2 b ^ 2 + 1 η 2 ν ^ 2 ,
a ^ 2 ( t ) η 3 a ^ 2 + 1 η 3 ν ^ 3 ,
b ^ 2 ( t ) η 4 b ^ 2 + 1 η 4 ν ^ 2 .

Metrics