Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-harmonic terahertz Smith-Purcell free-electron-laser with two tandem cylindrical-gratings

Open Access Open Access

Abstract

A modified Smith-Purcell free-electron-laser based on two tandem cylindrical-gratings is proposed. The preset grating with larger size, operating in the slow-wave condition, is to prebunch the initial continuous electron-beam, and the postpositive grating with smaller size, operating in the fast-wave condition, is used as the main radiator. Compared with traditional Smith-Purcell free-electron-lasers operating at the second harmonic of the bunched-beam, the present scheme operates at much higher harmonics, fifth and sixth harmonics have been achieved, and the radiation frequency is greatly increased consequently. And also the radiation power is enhanced by tens of times. Thus it could be developed as an efficient terahertz source with frequency being over 0.5 THz in practice.

© 2017 Optical Society of America

1. Introduction

Terahertz electromagnetic wave has been one of the hottest research topics in the past decades due to its promising applications in biology image, security check, material science and astronomical physics etc [1]. Terahertz radiation sources are of importance for those applications. Researchers all over the world have spent great efforts in developing various kinds of terahertz sources to meet different application purposes. Indeed, people has witnessed tremendous advancements in many categories of terahertz sources [2–7].

Traditional radiation sources driven by free-electron-beams, such as backward-wave-oscillators (BWOs) [8–11], travelling-wave-tubes (TWTs) [12, 13], and free-electron-lasers (FELs) [14–16], are generally praised for their high radiation power. Yet they encounter unavoidable limits in the terahertz region. For example, BWOs and TWTs are limited by the difficulty of very tiny-size structure manufacture and by the unreachable high beam-current-density [17, 18]; while FELs, which are based on accelerators and undulators, are criticized for the large equipment and enormous cost. To avoid these restrictions, other free-electron terahertz sources, such as Cherenkov radiation sources [19] and transition radiation sources [20], have experienced noticeable developments. Among them, those based on the Smith-Purcell radiation (SPR) [21], which is generated from fast charged-particles passing over a periodic surface, so-called Smith-Purcell free-electron-lasers (SP-FELs), may be the most attractive [22–25]. Compared with BWOs and TWTs, SP-FELs can generate radiation with much higher frequency from structures of the same size. And compared with traditional accelerator-based FELs, they are much more compact and less expensive.

In principle, the SP-FEL is essentially the coherent SPR from harmonics of a self-bunched electron-beam passing over a grating [26, 27]. The latter (self-bunched electron-beam) is produced by the interaction of an initial continuous electron-beam with backward surface waves on the grating [28]. The coherent SPR can promisingly be applied to generate terahertz radiation with relatively high power, which is proportional to the square of the charge quantity of bunches as well as to the square of bunches number. While planar SP-FELs had been extensively investigated in previous literatures [29, 30], cylindrical SP-FELs have gain increasing attentions [31–33]. It is because that sheet electron-beams applied in the planar SP-FEL are usually difficult to control in practice [34], and also they lead to non-uniform beam-wave interactions because of edge effects [35]. On the contrary, hollow electron-beams, which are axis-symmetric, used in the cylindrical SP-FEL are more controllable and avoid edge effects, which lead to a higher interaction efficiency. For example, [32] obtained 100 watts radiation with frequency of 0.2 THz in experiment. To increase the radiation power, [33] introduced cylindrical parabola reflection mirrors to form a quasi-optical cavity, which couples with harmonics of the bunched-beam. Yet such reflection mirrors are difficult to manufacture in practice. Note that traditional SP-FELs generally operated at the second harmonic of the bunched-beam, as a consequent of which their radiation frequency were generally less than 0.3 THz since the fundamental bunching frequency is restricted by aforementioned difficulties of BWOs in the terahertz region.

Lately, a special kind of SPR, named S-SPR, which is from radiation eigen modes of a grating, was demonstrated [36, 37]. It generates enhanced monochromatic radiations in definite directions, promisingly be applied to develop radiation sources with high power and high efficiency [38]. In the present paper, we apply the S-SPR from cylindrical grating to obtain coherent radiation from high harmonics, fifth or sixth harmonic, of the bunched-beam, aiming to generate radiation with much higher frequency and higher power than ordinary SP-FELs. To meet this purpose, we introduce a preset cylindrical grating to prebunch the initial continuous electron-beam. When high harmonics of the bunched-beam match frequencies of the S-SPR from the postposition grating, these harmonics will be coupled into enhanced coherent radiation. Based on this mechanism, a compact terahertz source with relatively high power is proposed and investigated.

2. Model description

The proposed scheme is illustrated in Fig. 1, which shows the r-z section of the device. A cylindrical hollow electron-beam successively passes over two cylindrical-gratings with rectangular grooves, which have the same outer radius. The first grating with bigger groove size is to prebunch the electron-beam. That is, on the first gating, the electron-beam interacts with backward surface waves (fundamental mode), as a consequence of which the electron-beam will be self-bunched with the fundamental bunching frequency (ω0). These electron bunches will generate coherent SPR above the grating. For traditional SP-FELs, only the second harmonic (ω = 2ω0) can be utilized to generate radiation because the intensity decreases substantially as the harmonic order increases (the third harmonic, if could be generated, would be quite weak). Whereas in the present model, the second grating with smaller groove size works as a main radiator. It operates in the S-SPR state, indicating that the radiation is monochromatic emission in definite directions. Providing that the frequency of the S-SPR matches one of high harmonics of the bunched-beam, the radiation intensity from this harmonic component will be greatly increased. By this means, one can get enhanced coherent radiations from high harmonics. Here we set the frequency of the S-SPR matching the fifth or sixth harmonic of bunched beam (ω = 5ω0 or ω = 6ω0), such that the radiation frequency is greatly increased in compared with traditional SP-FELs.

 figure: Fig. 1

Fig. 1 Schematics of the proposed Smith-Purcell free-electron-laser with two tandem cylindrical-gratings.

Download Full Size | PPT Slide | PDF

Properties of the beam-wave interaction and of the radiation from the cylindrical-grating are governed by the following dispersion equation [32, 33]:

dLn=+K1(kcnr0)kcnK0(kcnr0)[sin(kznd/2)kznd/2]2=1k0[N0(k0rc)J1(k0r0)J0(k0rc)N1(k0r0)][N0(k0rc)J0(k0r0)J0(k0rc)N0(k0r0)],
where Jm(m=0,1) and Nm(m=0,1) are the fist kind of Bessel function and the second kind of Bessel function of the m-th order, respectively, Km(m=0,1) is the second kind of modified Bessel function, rc = r0h, kcn=kzn2k02, kzn=kz+2nπL, k0 = ω/c is the wave vector, c is the light speed in the vacuum, L, d, r0 and h are grating parameters illustrated in Fig. 1.

In the present paper, structure parameters of the first grating and the beam velocity follow that given by Ref. [32], which had experimentally achieved expected results. According to Ref. [32], L1=0.9 mm, d1=0.45 mm, r0=20 mm, h1=0.45 mm, and the electron energy of the electron-beam is 80 keV. Calculated dispersion curves of waves propagating on the first grating are shown in Fig. 2(a). The operation state and interaction frequency of the grating are determined by the location of intersection points of beam lines with dispersion curves. One can see that the first grating operates in the ordinary SPR state. That is, intersection points are located in the backward surface (slow) wave region, indicating that the electron beam interacts with the backward surface wave of the grating, which leads to the self-bunching of the initial continuous electron-beam. The interaction frequency is about 0.1 THz, which is exactly the fundamental bunching frequency.

 figure: Fig. 2

Fig. 2 Dispersion curves of (a) the first grating and (b) the second grating. Curves in shaded regions are slow waves, while that in other regions are fast waves.

Download Full Size | PPT Slide | PDF

The bunched-beam will generate the SPR above two gratings. The radiation wavelength λ and direction (defined by θ as shown in Fig. 1) satisfy the following famous Smith-Purcell relation:

λ=L(c/vecosθ)/|n|,
in which ve is the beam velocity and n is a negative integer. The total radiation power from a bunched beam (a train of bunches) can be expressed as [22, 39]:
Pt=Pb[sin(Nbπω/ω0)sin(πω/ω0)]2,
in which Nb is the number of bunches over the grating and Pb denotes the radiation power from a single bunch:
Pb=P0[Ne+Ne2f(ω)],
where P0 is the radiation coefficient, Ne is the particle number of a single bunch, and f (ω) is the bunching factor. For a fully bunched electron-beam, f (ω) can be expressed as [40,41]:
f(ω)=f1(ω0)+f2(2ω0)+f3(3ω0)+
Besides the primary bunching component f1(ω0), there are a series of harmonics, which generally decrease with the harmonic order (f1 > f2 > f3 > …). In Eq. (4), the first term, being proportional to the particle number (or total charge quantity) of a single bunch Ne, indicates the incoherent radiation from the bunch; while the second term, which is proportional to the square of the particle number (Ne2), signifies the coherent radiation component. From Eq. (4) and Eq. (5) one can see that only at harmonics of the bunched-beam, with frequencies of 0, can the coherent radiation from particles in the bunch be achieved. Equation (3) illustrates that the total radiation power is proportional to the square of the bunches number (Nb2) provided ω/ω0 being an integer, which is exactly the coherent condition of the radiation from different bunches in the electron-beam. Thus the coherence from particles in a single bunch and from different bunches in the electron-beam can both be obtained at harmonics of the bunched-beam. Note that the radiation power decreases gradually with the harmonic order. And also the achievable harmonic number will be limited by the initial-velocity-spread of the electron-beam in practice.

Since the coherent SPR from the first grating has been extensively investigated, here we primarily concern the radiation from the second grating. Parameters of the second grating are set as: L2=0.35 mm, d2=0.05 mm, and h2=0.1 mm without loss of generality. Calculated dispersion curves are shown in Fig. 2(b), which illustrates that the second grating operates in the S-SPR state since the intersection point is in the fast wave region. The radiation frequency of the S-SPR is about 0.5 THz, matching that of the fifth harmonic of the bunched-beam. Thus the coherent radiation from the bunched-beam will be obtained from the second grating. On the other hand, the S-SPR, which is innately a coherent monochromatic radiation, has much higher intensity than the ordinary SPR. Consequently, the radiation from the second grating could generate radiation with much higher intensity than that in traditional SP-FELs, especially in higher harmonic components. Calculations, based on Eq. (2) show that the radiation direction from the second grating is about θ = 72°.

3. Simulation results and discussions

Simulations are performed by applying the two-dimensional fully-electromagnetic particle-in-cell (PIC) code CHIPIC [42], which is based on the FDTD algorithm. In simulations, gratings are set as perfect electric-conductors, period-number of the first and of the second gratings are 30 and 40, respectively. The whole simulation space is surrounded by perfect-matched-layers to eliminate reflection. The current density of the initial continuous electron-beam is set as 100 A/cm2 without loss of generality. The inner and outer radii of the hollow electron-beam are 20 mm and 20.3 mm, respectively, indicating that the beam thickness is 0.3 mm. Simulation obtained particle distribution of the bunched-beam in the r-z configuration space is shown in Fig. 3(a), which illustrates that the electron-beam is well bunched before passing over the second grating. Figure 3(b) presents the time evolution of the electric field (Ez) and its frequency spectrum detected at surface of the first grating, showing that the dominant frequency of the surface wave is about 0.098 THz. Figure 3(c) is the observed radiation field above the first grating and its spectrum. It shows that the radiation is largely focused in the second harmonic component, with frequency of 0.19 THz. These results agree with theoretical predictions and with that given in Ref. [32]. Note that the fundamental wave component, detected in Fig. 3(c), is originated from surface waves which radiate from both ends of the first grating. Figure 3(d) is the observed beam current density and its spectrum when the electron beam passes over the second grating. One can see that there are a direct-current (DC) component and a series of harmonics in the bunched-beam. The DC component signifies the incoherent radiation in Eq. (4), whereas harmonics denote the coherent radiation. The intensity decreases gradually with the harmonic order, according with the theoretical analysis on the bunch factor fn in Eq. (5).

 figure: Fig. 3

Fig. 3 (a) Snapshot of the particle distribution of the bunched-beam in the r-z configuration space. The inset shows the enlarged particle image. (b) Time evolution of the Ez field and its frequency spectrum detected at surface of the first grating. (c) Radiation field above the first grating and its spectrum. (d) Beam current density and its spectrum.

Download Full Size | PPT Slide | PDF

Simulation obtained electric field on the second grating surface and its spectrum are shown in Fig. 4(a), which illustrates that the fifth harmonic component, with frequency of 0.49 THz, is stronger than lower (third and fourth) harmonic components, indicating that the fifth harmonic is enhanced by matching the operation frequency of the S-SPR from the second grating. Figure 4(b) presents the detected radiation field from the second grating and its spectrum. Here fields in the time domain has been filtered to get the fifth harmonic component. The result of the case that the second grating is replaced by the first grating, namely, the ordinary SP-FEL, is also shown for comparison. One can see that the radiation field intensity is enhanced by 7 times in the present model, indicating that the radiation power increases by about 50 times. Figure 4(c) illustrates the observed radiation power, filtered to get the fifth harmonic component, from the second grating. It shows that the average radiation power is over 40 watts. Considering the total length of the second grating is 14 mm, the power density is about 3 watts per millimeter in length.

 figure: Fig. 4

Fig. 4 (a) Time evolution of the Ez field and its frequency spectrum detected at surface of the second grating. (b) Radiation field above the second grating and its spectrum. (c) Radiation power from the second grating.

Download Full Size | PPT Slide | PDF

Now we show that even higher harmonic of the bunched-beam can still be achieved from the present scheme. We adjust structure parameters of the second grating to be L2=0.32 mm, d2=0.05 mm, h2=0.07 mm, and keep other parameters unchanged. Calculated dispersion curves, shown in Fig. 5(a), indicate the frequency of the S-SPR from the second grating is about 0.6 THz, matching the sixth harmonic of the bunched-beam. Figure 5(b) presents the simulation obtained electric field on the second grating surface and its spectrum. One can notice that the sixth harmonic component, with frequency of 0.59 THz, is higher than lower (third, fourth, and fifth) harmonic components, signifying that the sixth harmonic is remarkably amplified by matching the S-SPR frequency of the second grating. Detected radiation field, being filtered to get the sixth harmonic component, from the second grating is shown in Fig. 5(c). Compared with the sixth harmonic of the ordinary SP-FEL, the intensity is increased by about 6 times, signifying the power is enhanced by 36 times. Figure 5(d) shows the radiation power is about 30 watts, indicating the power density is higher than 2 watts per millimeter in length. It should be noted that, in simulations of the present paper, factors that may affect the output power, such as the Ohmic loss of the grating and the initial-velocity-spread of the electron-beam, have not been taken into consideration. In practice, the obtainable power could be much less the idealized value obtained in simulations.

 figure: Fig. 5

Fig. 5 (a) Dispersion curves of the second grating after changing structure parameters. (b) Time evolution of the Ez field and its frequency spectrum detected at surface of the second grating. (c) Radiation field above the second grating and its spectrum. (d) Radiation power from the second grating.

Download Full Size | PPT Slide | PDF

Further simulations show that, without the first grating, the coherent SPR can not be generated from the second grating because the electron beam can not be self-bunched with such a high bunching-frequency. Actually, studies had demonstrated that, to achieve the beam-wave interaction with frequency being about 0.5 THz from a single grating, the required starting beam-current-density should be higher than 300 A/cm2, which is far beyond the emission capability of available cathodes and will also exert a great challenge for the electron-beam confinement [8]. Simulations also indicate that by slightly changing structure parameters of two gratings, the radiation with higher frequencies can still be obtained from higher (seventh or eighth) harmonics of the bunched-beam. That is to say the present scheme could be developed as an effective radiation source with frequency being higher than 0.5 THz, which is difficult to reach by traditional vacuum-electron-devices and SP-FELs.

4. Conclusion

A novel Smith-Purcell free-electron-laser based on two tandem cylindrical-gratings was proposed and investigated. It greatly increased the operating harmonic order of traditional Smith-Purcell free-electron-lasers, and enhanced the radiation frequency consequently. And also its radiation power was much higher than the traditional Smith-Purcell free-electron-laser. It may promisingly be applied to develop a compact and high power terahertz source.

Funding

Natural Science Foundation of China (61471332, 51627901, U1632150); Anhui Provincial Natural Science Foundation (1508085QF113).

References and links

1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]  

2. R. Eichholz, H. Richter, M. Wienold, L. Schrot tke, R. Hey, H. T. Grahn, and H.-W. Hbers, “Frequency modulation spectroscopy with a THz quantum-cascade laser,” Opt. Express 21, 32199 (2013) [CrossRef]  

3. A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012). [CrossRef]  

4. Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015). [CrossRef]   [PubMed]  

5. R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016). [CrossRef]  

6. S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012). [CrossRef]   [PubMed]  

7. M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008). [CrossRef]   [PubMed]  

8. M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010). [CrossRef]  

9. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011). [CrossRef]  

10. C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016). [CrossRef]  

11. D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016). [CrossRef]  

12. L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016). [CrossRef]  

13. M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005). [CrossRef]  

14. S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008). [CrossRef]  

15. K. B. Oganesyan, “On some possibilities of Felwi realization,” Laser Phys. Lett. 13, 056001 (2016). [CrossRef]  

16. G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993). [CrossRef]   [PubMed]  

17. J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012). [CrossRef]  

18. L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016). [CrossRef]  

19. S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012). [CrossRef]   [PubMed]  

20. B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000). [CrossRef]  

21. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953). [CrossRef]  

22. S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005). [CrossRef]   [PubMed]  

23. M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014). [CrossRef]  

24. J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012). [CrossRef]  

25. K. B. Oganesyan, “Smith-Purcell radiation amplifier,” Laser Phys. Lett. 12, 116002 (2015). [CrossRef]  

26. J. M. Wachtel, “Free-electron lasers using the Smith-Purcell effect,” J. Appl. Phys. , 50, 49 (1979). [CrossRef]  

27. J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998). [CrossRef]  

28. H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009). [CrossRef]  

29. Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009). [CrossRef]  

30. C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010). [CrossRef]  

31. H. P. Bluem, R. H. Jackson Jr., J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015). [CrossRef]  

32. J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016). [CrossRef]  

33. Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016). [CrossRef]  

34. W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015). [CrossRef]  

35. D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012). [CrossRef]  

36. W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014). [CrossRef]  

37. W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015). [CrossRef]  

38. W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016). [CrossRef]  

39. Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008). [CrossRef]  

40. J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

41. W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012). [CrossRef]  

42. J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009). [CrossRef]  

References

  • View by:

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. R. Eichholz, H. Richter, M. Wienold, L. Schrot tke, R. Hey, H. T. Grahn, and H.-W. Hbers, “Frequency modulation spectroscopy with a THz quantum-cascade laser,” Opt. Express 21, 32199 (2013)
    [Crossref]
  3. A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
    [Crossref]
  4. Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
    [Crossref] [PubMed]
  5. R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
    [Crossref]
  6. S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
    [Crossref] [PubMed]
  7. M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
    [Crossref] [PubMed]
  8. M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010).
    [Crossref]
  9. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
    [Crossref]
  10. C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
    [Crossref]
  11. D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
    [Crossref]
  12. L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
    [Crossref]
  13. M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
    [Crossref]
  14. S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
    [Crossref]
  15. K. B. Oganesyan, “On some possibilities of Felwi realization,” Laser Phys. Lett. 13, 056001 (2016).
    [Crossref]
  16. G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
    [Crossref] [PubMed]
  17. J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
    [Crossref]
  18. L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
    [Crossref]
  19. S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
    [Crossref] [PubMed]
  20. B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000).
    [Crossref]
  21. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953).
    [Crossref]
  22. S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
    [Crossref] [PubMed]
  23. M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
    [Crossref]
  24. J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
    [Crossref]
  25. K. B. Oganesyan, “Smith-Purcell radiation amplifier,” Laser Phys. Lett. 12, 116002 (2015).
    [Crossref]
  26. J. M. Wachtel, “Free-electron lasers using the Smith-Purcell effect,” J. Appl. Phys.,  50, 49 (1979).
    [Crossref]
  27. J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
    [Crossref]
  28. H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
    [Crossref]
  29. Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
    [Crossref]
  30. C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
    [Crossref]
  31. H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
    [Crossref]
  32. J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
    [Crossref]
  33. Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
    [Crossref]
  34. W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
    [Crossref]
  35. D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
    [Crossref]
  36. W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014).
    [Crossref]
  37. W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
    [Crossref]
  38. W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
    [Crossref]
  39. Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008).
    [Crossref]
  40. J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).
  41. W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
    [Crossref]
  42. J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
    [Crossref]

2016 (9)

R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
[Crossref]

K. B. Oganesyan, “On some possibilities of Felwi realization,” Laser Phys. Lett. 13, 056001 (2016).
[Crossref]

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
[Crossref]

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

2015 (5)

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

K. B. Oganesyan, “Smith-Purcell radiation amplifier,” Laser Phys. Lett. 12, 116002 (2015).
[Crossref]

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

2014 (2)

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014).
[Crossref]

2013 (1)

2012 (7)

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
[Crossref] [PubMed]

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
[Crossref]

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

2011 (1)

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

2010 (2)

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010).
[Crossref]

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

2009 (3)

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
[Crossref]

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

2008 (3)

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref] [PubMed]

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

2005 (2)

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

2000 (1)

B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000).
[Crossref]

1998 (1)

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

1993 (1)

G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
[Crossref] [PubMed]

1979 (1)

J. M. Wachtel, “Free-electron lasers using the Smith-Purcell effect,” J. Appl. Phys.,  50, 49 (1979).
[Crossref]

1953 (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953).
[Crossref]

1946 (1)

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Akram, M. N.

L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
[Crossref]

André, J.-M.

B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000).
[Crossref]

Andrews, H. L.

H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
[Crossref]

Antipov, S.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Asakawa, M. R.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Ban, D.

Banas, A.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Banas, K.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Banducci, M.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Barchfeld, R.

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Barnett, L.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Bielawski, S.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Billa, L. R.

L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
[Crossref]

Bluem, H. P.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

Booske, J. H.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Bowes, D.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Brau, C. A.

H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
[Crossref]

Cao, M.

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

Chan, C. W.

Chattopadhyay, G.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Chen, X.

L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
[Crossref]

Chew, A. B.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Chua, S. J.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Chum, C. C.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Cross, A. W.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Ding, C.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Ding, L.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Dobbs, R. J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Donohue, J. T.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
[Crossref]

Dupont, E.

Eichholz, R.

Evain, C.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Fathololoumi, S.

Fedurin, M.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Feng, J.

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Freeman, J. R.

R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
[Crossref]

Fremlin, J. H.

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Gai, W.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Gamzina, D.

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Gao, X.

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Gardelle, J.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
[Crossref]

Gent, A. W.

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Gill, J.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Glyavin, M. Y.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref] [PubMed]

Goldstein, M.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Golubiatnikov, G. Y.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref] [PubMed]

Gong, S.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

Gong, Y.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Grahn, H. T.

Guo, G.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Hangyo, M.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Hara, T.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Hbers, H.-W.

He, W.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

He, Z.

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

Hey, R.

Himes, L.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

Hosaka, M.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Hu, Q.

Imasaki, K.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Jabotinski, V.

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

Jackson, R. H.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

Jarvis, J. D.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
[Crossref]

Jia, Q.

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

Jiang, X.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Jing, C.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Jirauschek, C.

Joye, C. D.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Kanareykin, A.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Katoh, M.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Keitel, C.

G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
[Crossref] [PubMed]

Kesar, A. S.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Kim, K.-J.

Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008).
[Crossref]

Kimmitt, M. F.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Kimura, S.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Korbly, S. E.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Kory, C. L.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Kurizki, G.

G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
[Crossref] [PubMed]

Kusche, K.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Laframboise, S. R.

Lan, F.

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Lee, C.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Letizia, R.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

Li, D.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Li, H.

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Li, J

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Li, K.

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

Li, N.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Li, W.

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

Li, Y.

Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008).
[Crossref]

Li, Z.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

Liang, Z.

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Liao, C.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

Lin, M. C.

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

Lin, R.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Liu, D.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

Liu, H. C.

Liu, S.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

Liu, W.

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014).
[Crossref]

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

Lu, Y.

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

Luchinin, A. G.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref] [PubMed]

Luhmann, N. C.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

Luhmann, N.C.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Lves, R. L.

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

Maestrini, A.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Mátyás, A.

Mehdi, I.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Mineo, M.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010).
[Crossref]

Miram, G.

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

Miyamoto, S.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Mochihashi, A.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Modin, P.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
[Crossref]

Mohandas, R. A.

R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
[Crossref]

Naumov, A.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Neil, G. R.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Oganesyan, K. B.

K. B. Oganesyan, “On some possibilities of Felwi realization,” Laser Phys. Lett. 13, 056001 (2016).
[Crossref]

K. B. Oganesyan, “Smith-Purcell radiation amplifier,” Laser Phys. Lett. 12, 116002 (2015).
[Crossref]

Pan, P.

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Paoloni, C.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010).
[Crossref]

Pardo, B.

B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000).
[Crossref]

Park, G.-S.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Park, J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

Pearson, J.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Petrie, D. P. R.

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Phelps, A. D. R.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Piot, P.

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

Platt, C.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Popovic, B.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

Prokop, C. R.

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

Purcell, E. M.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953).
[Crossref]

Read, M. E.

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

Richter, H.

Risbud, S.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Ronald, K.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Rosamond, M. C.

R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
[Crossref]

Schlecht, E.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Schoessow, P.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Schrot tke, L.

Scully, M. O.

G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
[Crossref] [PubMed]

Shi, Z.

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Shimada, M.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Siegel, P.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Siles, J. V.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Sirigiri, J. R.

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Smith, S. J.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953).
[Crossref]

Spear, A.G.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Stoltz, P.

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

Szwaj, C.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Takahashi, T.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Takashima, Y.

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

Tang, X.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Tang, Y.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Tanoto, H.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Temkin, R. J.

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

Teng, J.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Thomas, B.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Todd, A. M. M.

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

Tomlin, S. G.

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Tsunawaki, Y.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Urata, J.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Wachtel, J. M.

J. M. Wachtel, “Free-electron lasers using the Smith-Purcell effect,” J. Appl. Phys.,  50, 49 (1979).
[Crossref]

Wallis, P. J.

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

Walsh, J. E.

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

Wang, B.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Wang, L.

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

Wang, W.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Wang, Y.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

Ward, J. S.

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

Wasilewski, Z. R.

Wei, W.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Wei, Y.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Wienold, M.

Wu, Q. Y.

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Xu, J.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Xu, Z.

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014).
[Crossref]

Yakimenko, V.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Yang, Z.

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Yin, H.

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Yue, L.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Zhang, L.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

Zhang, P.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

Zhang, Y.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

Zhao, G.

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Zhao, J.

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

Zheng, Y.

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

Zholents, A.

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Zhou, J.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

Zhou, Y.

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
[Crossref]

AIP adv. (1)

W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP adv. 5, 127135 (2015).
[Crossref]

Appl. Phys. Lett. (6)

W. Liu, Y. Lu, L. Wang, and Q. Jia, “A multimode terahertz-Orotron with the special Smith-Purcell radiation,” Appl. Phys. Lett. 108, 183510 (2016).
[Crossref]

Y. Li and K.-J. Kim, “Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources,” Appl. Phys. Lett. 92, 014101 (2008).
[Crossref]

J. Gardelle, P. Modin, and J. T. Donohue, “Observation of copious emission at the fundamental frequency by a Smith-Purcell free-electron laser with sidewalls,” Appl. Phys. Lett. 100, 131103 (2012).
[Crossref]

C. R. Prokop, P. Piot, M. C. Lin, and P. Stoltz, “Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime,” Appl. Phys. Lett. 96, 151502 (2010).
[Crossref]

W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam,” Appl. Phys. Lett. 107, 133501 (2015).
[Crossref]

D. Li, M. Hangyo, Y. Tsunawaki, Z. Yang, Y. Wei, S. Miyamoto, M. R. Asakawa, and K. Imasaki, “Growth rate and start current in Smith-Purcell free-electron lasers,” Appl. Phys. Lett. 100, 191101 (2012).
[Crossref]

IEEE Journal (1)

J. H. Fremlin, A. W. Gent, D. P. R. Petrie, P. J. Wallis, and S. G. Tomlin, “Principles of velocity modulation,” IEEE Journal 93, 875–917 (1946).

IEEE Trans. Electron Devices (3)

M. Mineo and C. Paoloni, “Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications,” IEEE Trans. Electron Devices 57, 1481 (2010).
[Crossref]

L. R. Billa, M. N. Akram, and X. Chen, “H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier,” IEEE Trans. Electron Devices 63(4):1722–1727 (2016).
[Crossref]

J. Zhao, D. Gamzina, N. Li, J Li, A.G. Spear, L. Barnett, M. Banducci, S. Risbud, and N.C. Luhmann, “Scandate Dispenser Cathode Fabrication for A High-Aspect-Ratio High-Current-Density Sheet Beam Electron Gun,” IEEE Trans. Electron Devices 59(6), 1792–1798, (2012).
[Crossref]

IEEE Trans. Nanotechnology (1)

D. Gamzina, H. Li, L. Himes, R. Barchfeld, B. Popovic, P. Pan, R. Letizia, M. Mineo, J. Feng, C. Paoloni, and N. C. Luhmann, “Nanoscale surface roughness effects on THz vacuum electron device performance,” IEEE Trans. Nanotechnology 15(1), 85–93 (2016).
[Crossref]

IEEE Trans. Plasma Sc. (1)

H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, J. Gardelle, P. Modin, and J. T. Donohue, “First lasing from a high-power cylindrical grating Smith-Purcell device,” IEEE Trans. Plasma Sc. 43(9), 3176 (2015).
[Crossref]

IEEE Trans. Plasma Sci. (2)

M. E. Read, V. Jabotinski, G. Miram, and R. L. Lves, “Design of a gridded gun and PPM-focusing structure for a high-power sheet electron beam,” IEEE Trans. Plasma Sci. 33, 647 (2005).
[Crossref]

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: An efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37, 2002 (2009).
[Crossref]

IEEE Trans. Plasma Science (1)

C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L. Yue, Y. Zheng, X. Tang, Y. Tang, P. Pan, H. Li, R. Letizia, M. Mineo, J. Feng, and N. C. Luhmann, “THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion,” IEEE Trans. Plasma Science 44(4) 369–376 (2016).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).
[Crossref]

A. Maestrini, I. Mehdi, J. V. Siles, J. S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, “Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz,” IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012).
[Crossref]

IEEE Trans. THz Sci. Technol. (2)

J. Gardelle, P. Modin, H. P. Bluem, R. H. Jackson, J. D. Jarvis, A. M. M. Todd, and J. T. Donohue, “A Compact THz Source: 100/200 GHz Operation of a Cylindrical Smith-Purcell Free-Electron Laser,” IEEE Trans. THz Sci. Technol. 6(3), 1–6 (2016).
[Crossref]

Y. Zhou, Y. Zhang, and S. Liu, “Electron-beam-driven enhanced terahertz coherent Smith-Purcell radiation within a cylindrical quasi-optical cavity,” IEEE Trans. THz Sci. Technol. 6(2):262–267 (2016).
[Crossref]

J. Appl. Phys. (5)

H. L. Andrews, J. D. Jarvis, and C. A. Brau, “Three-dimensional theory of the Smith-Purcell free-electron laser with side walls,” J. Appl. Phys. 105, 024904 (2009).
[Crossref]

J. M. Wachtel, “Free-electron lasers using the Smith-Purcell effect,” J. Appl. Phys.,  50, 49 (1979).
[Crossref]

M. Cao, W. Liu, Y. Wang, and K. Li, “Three-dimensional theory of Smith-Purcell free-electron laser with dielectric loaded grating,” J. Appl. Phys. 116, 103104 (2014).
[Crossref]

R. A. Mohandas, J. R. Freeman, and M. C. Rosamond, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119, 153103 (2016).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111, 063107 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (1)

L. Zhang, Y. Wei, G. Guo, J. Xu, W. Wei, Y. Wang, C. Ding, X. Jiang, G. Zhao, Y. Gong, W. Wang, and G.-S. Park, “An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide,” J. Phys. D: Appl. Phys. 49235102 (2016).
[Crossref]

Laser Phys. Lett. (2)

K. B. Oganesyan, “On some possibilities of Felwi realization,” Laser Phys. Lett. 13, 056001 (2016).
[Crossref]

K. B. Oganesyan, “Smith-Purcell radiation amplifier,” Laser Phys. Lett. 12, 116002 (2015).
[Crossref]

Nanotechnology (1)

Q. Y. Wu, H. Tanoto, L. Ding, C. C. Chum, B. Wang, A. B. Chew, A. Banas, K. Banas, S. J. Chua, and J. Teng, “Branchlike nano-electrodes for enhanced terahertz emission in photomixers,” Nanotechnology 26, 255201 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Nat. Phys. (1)

S. Bielawski, C. Evain, T. Hara, M. Hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, “Tunable narrowband terahertz emission from mastered laser-electron beam interaction,” Nat. Phys. 4, 390–393 (2008).
[Crossref]

New J. Phys. (1)

W. Liu and Z. Xu, “Special Smith-Purcell radiation from an open resonator array,” New J. Phys. 16, 073006 (2014).
[Crossref]

Nucl. Inst. Meth. Phys. Res. A (1)

Z. Shi, Z. Yang, F. Lan, X. Gao, Z. Liang, and D. Li, “Coherent terahertz Smith-Purcell radiation from a two-section model,” Nucl. Inst. Meth. Phys. Res. A 607, 367 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1070 (1953).
[Crossref]

Phys. Rev. E (1)

B. Pardo and J.-M. André, “Classical theory of resonant transition radiation in multilayer structures,” Phys. Rev. E 63016613 (2000).
[Crossref]

Phys. Rev. Lett. (5)

S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of frequency-locked coherent terahertz Smith-Purcell radiation,” Phys. Rev. Lett. 94, 054803 (2005).
[Crossref] [PubMed]

J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, and J. E. Walsh, “Superradiant Smith-Purcell emission,” Phys. Rev. Lett. 80(3), 516–519 (1998).
[Crossref]

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100, 015101 (2008).
[Crossref] [PubMed]

G. Kurizki, M. O. Scully, and C. Keitel, “Free-electron lasing without inversion by interference of momentum states,” Phys. Rev. Lett. 70, 1433 (1993).
[Crossref] [PubMed]

S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, “Experimental observation of energy modulation in electron beams passing through terahertz dielectric Wakefield structures,” Phys. Rev. Lett. 108, 144801 (2012).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the proposed Smith-Purcell free-electron-laser with two tandem cylindrical-gratings.
Fig. 2
Fig. 2 Dispersion curves of (a) the first grating and (b) the second grating. Curves in shaded regions are slow waves, while that in other regions are fast waves.
Fig. 3
Fig. 3 (a) Snapshot of the particle distribution of the bunched-beam in the r-z configuration space. The inset shows the enlarged particle image. (b) Time evolution of the Ez field and its frequency spectrum detected at surface of the first grating. (c) Radiation field above the first grating and its spectrum. (d) Beam current density and its spectrum.
Fig. 4
Fig. 4 (a) Time evolution of the Ez field and its frequency spectrum detected at surface of the second grating. (b) Radiation field above the second grating and its spectrum. (c) Radiation power from the second grating.
Fig. 5
Fig. 5 (a) Dispersion curves of the second grating after changing structure parameters. (b) Time evolution of the Ez field and its frequency spectrum detected at surface of the second grating. (c) Radiation field above the second grating and its spectrum. (d) Radiation power from the second grating.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d L n = + K 1 ( k c n r 0 ) k c n K 0 ( k c n r 0 ) [ sin ( k z n d / 2 ) k z n d / 2 ] 2 = 1 k 0 [ N 0 ( k 0 r c ) J 1 ( k 0 r 0 ) J 0 ( k 0 r c ) N 1 ( k 0 r 0 ) ] [ N 0 ( k 0 r c ) J 0 ( k 0 r 0 ) J 0 ( k 0 r c ) N 0 ( k 0 r 0 ) ] ,
λ = L ( c / v e cos θ ) / | n | ,
P t = P b [ sin ( N b π ω / ω 0 ) sin ( π ω / ω 0 ) ] 2 ,
P b = P 0 [ N e + N e 2 f ( ω ) ] ,
f ( ω ) = f 1 ( ω 0 ) + f 2 ( 2 ω 0 ) + f 3 ( 3 ω 0 ) +

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved