Abstract

We first investigate the polarization coexistence and switching between the orthogonal π- and σ-polarization states in a free running optical bistability Tm,Ho:LLF laser. The output performances of the optical bistability Tm,Ho:LLF laser is numerically simulated, based on a new rate equation theory model taking into account the influences of polarization-dependent gain and losses. The simulation results show the polarization coexistence and switching of output laser in the process of decreasing pump power. The physical mechanism of polarization coexistence and switching is clarified by analyzing the polarization-dependent net-gain coefficients. Furthermore, the polarization coexistence and switching are experimentally realized in the optical bistability Tm,Ho:LLF laser, which validates the theoretical analysis. The theoretical model can be applied to analyze the polarization coexistence and switching in other kinds of (quasi-) three-level optical bistable lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Solid state lasers emitting in the 2 μm eye-safe region have attracted much interest in recent years due to their wide applications in optical communication, coherent Doppler wind lidar, differential absorption lidar, range-finding, photo-medicine, and nolinear frequency conversion [1–4]. Benefiting from large emission cross-section, long upper level lifetime, and high quantum efficiency, Tm-Ho codoped laser materials are excellent candidates for generating 2 μm laser. Among them, Tm,Ho:LuLiF4 (LLF) is a kind of excellent laser crystal because of high natural birefringence, low upconversion effect, and large energy spread of the manifolds [5,6]. In the past years, continuous wave (CW), Q-switched, and mode-locked Tm,Ho:LLF lasers were widely researched [7–9]. Besides, the optical bistability of Tm,Ho:LLF laser in CW scheme as an interesting phenomenon has also been experimentally investigated [10]. The optical bistability is a behavior in which the system exhibits two output intensities for the same input intensity. Owing to this specific feature, the optical bistability has many potential applications in optical communication, optical computing, optical logic, optical switching, and optical cooling [11–15]. The optical bistability has been realized in CO2 laser [16], quantum cascade laser [17], and two-section quantum dot laser [18], etc. The optical bistability was also obtained in some quasi-three-level solid state lasers. Liu et al reported the optical bistability in Yb:LuVO4, Yb:YGdVO4, and Yb:GdVO4 lasers respectively [19–21]. The optical bistability phenomenon was also observed in Tm,Ho:YLF laser, moreover the influence of temperature on the optical bistability was investigated [22]. Recently, the optical bistability was realized in the Tm,Ho:LLF laser, furthermore the intensity switching based on optical bistability was achieved successfully by our group [23]. At the same time, the theoretical investigation on the optical bistability in a quasi-three-level solid state laser has been performed [24,25]. It is worth mentioning that the optical bistability achieved in some quasi-three-level solid state lasers was accompanied with polarization coexistence and switching (PCS) of the orthogonal π- and σ-polarization states [19,20]. The PCS in solid state lasers, without inserting any polarization-dependent optical elements to introduce different losses, have attracted growing attention. X. Mateos et al reported the PCS of Tm:KLu(WO4)2 lasers [26–28], and the PCS was also realized in Yb:KGW laser [29]. The polarization switching of Tm:KLu(WO4)2 and Yb:KGW lasers occurred when the pump power was increased to a certain range, which was attributed to the effect of polarization-dependent thermal lens [28,29]. The PCS in the quasi-three-level optical bistability lasers were relatively different, which happened in the process of decreasing pump power from a relative high level [19,20]. In the process of increasing pump power, the lasers operated in pure π-polarization state. The PCS has been observed in several kinds of Yb doped optical bistability quasi-three-level solid state lasers. However, to the best of our knowledge, the detailed theoretical analysis and physical mechanism of PCS in the quasi-three-level optical bistability solid state laser has not been given so far.

In this paper, we theoretically and experimentally investigate the PCS of π- and σ-polarization states in a free running optical bistability Tm,Ho:LLF laser. The new coupled rate equations are established, considering the polarization-dependent gain and losses. Based on the coupled rate equations, the PCS are numerically investigated. The physical mechanism of PCS is clarified by the analysis of polarization-dependent net gain coefficients. Furthermore the PCS in a free-running optical stability Tm,Ho:LLF laser is realized. The experimental results are in agreement with the theoretical analysis, and the theoretical model is proved to be reasonable.

2. Gain spectra analysis

First, we analyze the polarization-dependent gain spectra of quasi-three-level Tm,Ho:LLF, and the dimensionless gain G under steady-state condition can be expressed as [30]

G=(NHol)σem(λ)[β(1β)ZexcZgndexp((EZL1λ)hc/kbT)]
where NHo is the doped Ho3+ concentration in the Tm,Ho:LLF crystal, l is the crystal length, σem(λ) is the emission cross section at the wavelength λ, β = N2/(N1 + N2)≈N2/NHo is the inversion rate, and N2, Zexc and N1, Zgnd are the population density and partition functions of the upper 5I7 and lower 5I8 manifolds, respectively. EZL is zero-line energy of the crystal, h is the Planck constant, c is the speed of light in vacuum, kb is the Boltzmann constant, and T is the temperature. Based on the emission spectra, and with Eq. (1) and the following parameters [6]: l = 2.5 mm, NHo = 5.59 × 1019 cm−3, T = 283 K, Zexc = 11.4, Zgnd = 9, EZL = 5153 cm−1, the π- and σ-polarization gain spectra of Tm,Ho:LLF are calculated. The gain spectra for several inversion parameters β = 0.2, 0.25, 0.3, and 0.4 are shown in Fig. 1. It is found from Fig. 1(a) that the maximum gain is around 2065 nm when the inversion rate β is less than 0.3 for the π-polarization. With the increase of β value, the maximum gain will appear at 2053 nm short wavelength. However, for σ-polarization, the maximum gain is always near 2065 nm, regardless of the change of β value, as shown in Fig. 1(b). It is worth noting that the gain values for π- and σ-polarization states around 2065 nm can be equivalent between β = 0.2 and 0.25, which means that the PCS near 2065 nm can be achieved by properly adjusting the polarization-dependent cavity losses.

 figure: Fig. 1

Fig. 1 Gain spectra of Tm,Ho:LLF for (a) π-polarization and (b) σ-polarization for inversion parameters β = 0.2, 0.25, 0.3 and 0.4.

Download Full Size | PPT Slide | PDF

3. Theoretical investigations

For the singly end-pumped Tm,Ho:LLF laser, the distribution of pump power is nonuniform along the axis of the crystal. Therefore, the laser crystal in the laser mode can be divided into two parts: gain region (high pump intensity region) and absorption region (low pump intensity region) [25]. The energy transfer between the Tm3+ 3H4 and Ho3+ 5I7 manifolds is much fast compared to their upper state lifetimes, so they can be treated as a coupled level under CW pumping. Under considering the polarization characteristic, ground state reabsorption (GSR), and energy transfer upconversion (ETU), the rate equations can be expressed as [25,31]

dN1dt=ηpRrp(r,z)N1τQN12σπcn[fHo(fuπ+flπ)N1flπNHo]Φπφl(r,z)σσcn[fHo(fuσ+flσ)N1flσNHo]Φσφl(r,z)
dN2dt=ηpRrp(r,z)N2τQN22σπcn[fHo(fuπ+flπ)N2flπNHo]Φπφl(r,z)σσcn[fHo(fuσ+flσ)N2flσNHo]Φσφl(r,z)
dΦdt=σπcΦπnV1ΔN1πϕl(r,z)dV+σπcΦπnV2ΔN2πϕl(r,z)dV-Φπτcπ+σσcΦσnV1ΔN1σϕl(r,z)dV+σσcΦσnV2ΔN2σϕl(r,z)dV-Φστcσ
where N1 and N2 are the population densities of the coupling upper level in the gain region and absorption region respectively, and ηp is the effective quantum efficiency. For the incident pump power of Pin, the pump rate R can be written as R = ηαPin/hνp, where νp is the frequency of the pump beam, and ηα = 1-exp(-αl) is the fraction of the incident pump power absorbed in the crystal of length l with an absorption coefficient α. τ is the lifetime of the coupling upper level, Q is the ETU coefficient, and σπ and σσ are the stimulated emission cross sections for π- and σ-polarization states respectively. fHo is the fractional population of Ho3+ in the coupling upper level, f and f are the fractions of the total Ho3+ 5I7 population density residing in the laser upper level for the π- and σ-polarization states respectively, f and f are the fraction of the total Ho3+ 5I8 population density residing in the laser lower level for the π- and σ-polarization states respectively, and NHo is the concentration of the doped Ho3+ population in the Tm,Ho:LLF crystal. leff = lcav + (n-1)l is the effective length of the resonator, where lcav is the length of cavity, and n is the index of refraction at the wavelength of output laser. Φ = Φπ + Φσ is the total cavity photon number, and Φπ/σ = 2leffPoutπ/σ/chνπ/σTOC are the cavity photon numbers of the π- and σ-polarization states, where Poutπ/σ are the laser output powers of the π- and σ-polarization states, νπ/σ are the frequencies of the output laser for the π- and σ-polarization states, and TOC is the output coupler transmission at the laser wavelength. ∆N1π/σ = fHo(fuπ/σ + flπ/σ)N1-flπ/σNHo and ∆N2π/σ = fHo(fuπ/σ + flπ/σ)N2-flπ/σNHo are the inversion population densities in the gain region and absorption regions for the π- and σ-polarization states, respectively. V1 and V2 are the volumes of the gain region and absorption region, respectively. We assume that the pump and laser beams are TEM00 Gaussian intensity distributions. The normalized pump distribution is given by
rp(r,z)=2αηαπωp2(z)exp[2r2ωp2(z)]exp(αz)
ωp2(z)=ωp02+[λp(zd)πωp02]2
where ωp(z) is the pump beam radius in the laser crystal, ωp0 is the radius at the waist of the pump beam, λp is the wavelength of the pump beam, d is the distance between the waist of the pump beam and the front facet of the gain medium, and r is the transverse radial coordinate. The normalized photon density in free space is given by
ϕl(r,z)=2πωl2leffexp(2r2ωl2)
where ωl is the laser beam radius. The cavity photon lifetimes of the π- and σ-polarization states can be expressed as
τcπ/σ=2leffcδπ/σ
δπ/σ=δfπ/σ+δdπ/σ+ln(11TOC)
where δπ/σ are the total intracavity losses of the π- and σ-polarization states, δfπ/σ are the nondiffraction intracavity losses of the π- and σ- polarization states, which can be controlled by adjusting the cavity, and δd is the diffraction loss due to the thermally induced spherical aberration and can be calculated by [32]
δd=1|0rbeiΔφ(r)e2r2/ωl2rdr0rbe2r2/ωl2rdr|2
where rb is the radius of the laser rod, ωl is the radius of the laser beam, and the phase shift Δφ(r) induced by the wave aberration can be written as [32]
Δφ(r)=dndTξPinηαKcλ(1+lnrb2ωp2)(rωP)
Δφ(r)=dndTξPinηαKcλ(r2ωp2+lnrb2r2)(rωP)
where dn/dT is the temperature-dependent index change, ξ is the fractional thermal loading, Kc is the thermal conductivity, ωp is the radius of the pump beam, and λ is the laser wavelength. The anisotropic features, such as the different thermal conductivity Kc and temperature-dependent index change dn/dT along the a- and c-axes, enable the Tm,Ho:LLF crystal to exhibit quite different diffraction losses for the π-polarization (E∥c) and σ-polarization (E⊥c) states, respectively. As a result, the diffraction loss of Tm,Ho:LLF laser is polarization-dependent. It should be mentioned that for realizing the optical bistability, the laser mode size ωl is usually set to be larger than the pump mode size ωp in order to obtain a suitable absorption region. However, the larger mode-to-pump ratio will lead to the increase of the diffraction loss δd. Therefore, choosing a suitable mode-to-pump ratio cannot only realize the optical bistability, but also control the diffraction loss δd. With Eqs. (10)-(12) and the following parameters [6,31]: dnc/dT = −3.6 × 10−6 K−1 (c-axis), dna/dT = −6 × 10−6 K−1 (a-axis), Kcc = 6.3 WK−1m−1 (c-axis), Kca = 5 WK−1m−1 (a-axis), α = 5.4 cm−1, l = 2.5 mm, λ = 2065 nm, ξ = 0.4, rb = 2.5 mm, ωl = 180 μm and ωp0 = 85 μm, the diffraction losses for the π- and σ-polarization states as a function of pump power are calculated, as shown in Fig. 2. It can be seen from Fig. 2, that the higher pump power, the larger the thermally induced diffraction losses become for a given mode-to-pump ratio. Furthermore, the thermally induced diffraction loss of σ-polarization is larger and grows faster than the one of π-polarization state owing to the smaller thermal conductivity Kc and the bigger temperature-dependent index change dn/dT.

 figure: Fig. 2

Fig. 2 Calculated diffraction losses as a function of pump power for the π- and σ-polarizations.

Download Full Size | PPT Slide | PDF

With Eqs. (2)-(9), the results of Fig. 2, and the following parameters [6]: λp = 792 nm, λ = 2065 nm, ηp = 1.57, τ = 11.4 ms, Q = 5 × 10−18 cm3s−1, σπ = 1.2 × 10−20 cm2, σσ = 0.89 × 10−20 cm2, f = 0.089, f = 0.176, fHo = 0.65, f = f = 0.026, c = 3 × 108 m/s, NHo = 5.59 × 1019cm−3, δfπ = 0.03, δfσ = 0.025, lcav = 55 mm, n = 1.4, TOC = 0.05, the output power as a function of pump power for the free-running Tm,Ho:LLF laser is calculated, as shown in Fig. 3. For demonstrating the phenomenon more clearly, here we plot the numerical results in two figures for increasing and decreasing pump power, respectively. Figure 3(a) depicts the relationship between the output power and the increasing pump power. When the pump power is increased from zero, the laser does not oscillate until a critical point of pump power, referred to as on-threshold, is reached at Pin = Pon = 1.54 W, at which the output power jumps from zero to a substantial level of 58 mW. Above this point the output power increases linearly with the pump power, furthermore the output laser is purely π-polarized. For the quasi-three-level Tm,Ho:LLF laser, the optical bistability belongs to absorption type because of GSR of Ho3+ 5I8 lower level to 2 μm laser. Before the laser oscillates, the absorption region is just like the role of saturable absorber in the passively Q-switched operation, which leads to a high inversion population density. In this case, the emission cross section becomes the key factor, and oscillating will occur on the transition with the larger emission cross section [7,8]. Moreover, the thermal induced diffraction loss of the σ-polarization state is larger than that of the π-polarization state. Hence, the laser is π-polarized at the point of on-threshold due to the larger emission cross section and smaller diffraction loss compared with those of the σ-polarization state, though the net gain coefficient of the σ-polarization state also satisfies the oscillation condition. At the same time, the 2053 nm π-polarized laser cannot start oscillation, due to the lower gain, compared with the π- and σ-polarization states at 2065 nm for a relative low β value, as shown in Fig. 1.

 figure: Fig. 3

Fig. 3 Calculated output power as a function of pump power for the Tm,Ho:LLF laser with (a) increasing and (b) decreasing pump power, showing polarization coexistence and switching, and optical bistability.

Download Full Size | PPT Slide | PDF

In the process of decreasing pump power, the output power as a function of pump power is described in Fig. 3(b). Decreasing the pump power from 2 to 1.65 W, the output laser is only π-polarized around 2065 nm. When the pump power is further decreased to 1.65 W, the σ-polarized laser around 2065 nm starts to oscillate. With the decreasing of pump power from 1.65 to 1.48 W, the output power of σ-polarized laser increases from zero to 54 mW, however the output power of π-polarized laser decreases from 64 mW to zero. In the range of 1.65-1.48 W in terms of decreasing pump power, the Tm,Ho:LLF laser not only shows the coexistence of the orthogonal π- and σ-polarization states, but also completes the polarization switching from π-polarization to σ-polarization. At the pump power of 1.48 W, the π-polarized laser ceases, leaving only the σ-polarized laser. Reducing the pump power further to the off-threshold Poff = 1.25 W, the output power of σ-polarized laser drops from 24 mW to zero. According to the numerical simulation results, a hysteresis loop in the dependence of total output power on pump power is presented in Fig. 3. For total output power, in the range of pump power Poff<Pin<Pon, the operation behavior of the Tm,Ho:LLF laser is bistable.

Apart from the output power characteristic, the PCS between π- and σ-polarization states in the optical bistability Tm,Ho:LLF laser can be illustrated more intuitively from the perspective of the polarization-dependent net-gain. According to Eq. (4), the total gain coefficient GTotal, and the π-polarization gain coefficient Gπ, and the σ-polarization gain coefficient Gσ can be respectively expressed as

GTotal=ΦπGπ+ΦσGσΦ=ΦπGπ+ΦσGσΦπ+Φσ
Gπ=σπnV1ΔN1πφl(r,z)dV
Gσ=σσnV1ΔN1σφl(r,z)dV
The total loss coefficient LTotal, the π-polarization loss coefficient Lπ, and the σ-polarization loss coefficient Lσ can be respectively written as
LTotal=ΦπLπ+ΦσLσΦ=ΦπLπ+ΦσLσΦπ+Φσ
Lπ=σπnV2ΔN2πφl(r,z)dV+δπ2leff
Lσ=σσnV2ΔN2σφl(r,z)dV+δσ2leff
According to Eqs. (13)-(18), the net-gain coefficients for total, π- and σ-polarization states can be respectively given by
GN=GTotalLTotal
GNπ=GπLπ
GNσ=GσLσ
The net-gain coefficients for total, π- and σ-polarization states as a function of pump power are shown in Fig. 4. It can be seen from Fig. 4(a) that the total net-gain coefficient is smaller than zero and the laser will not oscillate, before pump power is increased to the on-threshold pump power Pon = 1.54 W from zero. Increasing the pump power to Pon = 1.54 W, the total net- gain coefficient is equal to zero and the laser will begin to oscillate. In the process of decreasing pump power from a high level (more than Pon = 1.54 W), the total net-gain coefficient is equal to zero until the pump power is decreased to the off-threshold pump power Poff = 1.25 W. Reducing the pump power further, the total net-gain coefficient becomes smaller than zero and the laser ceases. When the pump power is in the bistability region (Poff<Pin<Pon), there are two possible total net-gains, depending on the route (increasing or decreasing) by which the pump power goes into the bistability region.

 figure: Fig. 4

Fig. 4 Calculated (a) total, (b) π-polarization, and (c) σ-polarization net gain coefficients as a function of pump power.

Download Full Size | PPT Slide | PDF

Figure 4(b) and 4(c) demonstrate the net-gain coefficients of the π- and σ-polarization states, respectively. Before increasing pump power to Pon = 1.54 W, the net-gain coefficients of π- and σ-polarization states are both less than zero, and the laser does not oscillate. The net-gain coefficients of π- and σ-polarization states both reach zero at the on-threshold pump power of 1.54 W, however only the π-polarized laser begins to oscillate due to a larger emission cross section as previously mentioned. As the pump power is increased to over 1.65 W, compared with the π-polarization state, the higher σ-polarization diffraction loss makes the σ-polarization net-gain coefficient become smaller than zero. However the π-polarization net-gain coefficient is still kept to be zero. As a consequence, the output laser is always π-polarized in the process of increasing pump power. During the pump power is decreased from 2 to 1.65 W, the π-polarization net-gain is always equal to zero, the σ-polarization net gain coefficient increases from a negative value to zero, and the laser still operates in purely π-polarization state. In the coexistence region between 1.48 and 1.65 W, the net-gain coefficients of the orthogonally π- and σ-polarized laser are both equal to zero. The equalized net-gain coefficients allow both π- and σ-polarized laser to oscillate and coexist. As the pump power is decreased to below 1.48 W, the π-polarization net-gain coefficient becomes smaller than zero and the σ-polarization net-gain coefficient keeps to be zero, which makes the σ-polarized laser replace the π-polarized laser. Therefore, a complete switching between the two orthogonal π- and σ-polarization states is accomplished, leaving only the σ-polarization state laser. Further decreasing the pump power to the off-threshold pump power Poff = 1.25 W, the σ-polarization net-gain coefficient drops from zero to a negative value, which leads to the ceasing of σ-polarized laser.

Comparing the simulation results shown in Fig. 3 and Fig. 4, it can been found that the polarization-dependent net-gain coefficients explain the output performances of the free-running optical bistability Tm,Ho:LLF laser very well. Based on the above analysis, it can be concluded that the polarization-dependent diffraction losses can balance the net gain coefficients of π- and σ-polarization states by appropriate selecting the mode-to-pump ratio and nondiffraction losses. The PCS in the optical bistability Tm,Ho:LLF laser mainly result from the regulation of polarization-dependent losses and the competition of net gain between π- and σ-polarization states.

4. Experimental results

The experimental setup is shown in Fig. 5, and a simple plane-concave cavity is employed. The pump source is a 792 nm fiber-coupled diode with a maximum output power of 3 W. The radius and numerical aperture of the fiber core are 50 μm and 0.22, respectively. A coupling optics system is used to focus the pump beam, and the pump spot radius in the crystal is about 85 μm. The a-cut Tm,Ho:LLF laser crystal has dopant concentrations of 5% Tm, 0.5% Ho with dimensions of 5 mm × 5 mm × 2.5 mm. The crystal is wrapped with indium foil and held in a brass heat sink, and the temperature of the heat sink is kept at 283 K. A dichromic coating on the front face of the crystal is high transmition at 792 nm, but is totally reflection at 2 µm. The other face is antireflection coated at 792 nm and 2 µm. The curvature radius and transmittance of the output coupler are 103 mm and 5%, respectively. The resonator is formed between the planar crystal front face and the output coupler, and the cavity length of is 55 mm.

 figure: Fig. 5

Fig. 5 Experimental setup of the optical bistability Tm,Ho:LLF laser.

Download Full Size | PPT Slide | PDF

Figures 6(a) and 6(b) show the output power characteristics of the Tm,Ho:LLF laser with two processes of increasing pump power and decreasing pump power, respectively. For increasing pump power, the output power as a function of pump power is shown in Fig. 6(a). When the pump power is increased to the on-threshold pump power Pon = 1.8 W from zero, the output power jumps from zero to a substantial level of 59 mW. Above this point, the output power increases linearly with the pump power, and the laser is purely π-polarized at 2069 nm, as shown in Fig. 7(a). In the process of decreasing pump power, the output power as a function of pump power is shown in Fig. 6(b). Decreasing the pump power from 2.2 to 1.96 W, the output power decreases with nearly the same slope and the laser is also purely π-polarized at 2069 nm. When pump power is decreased to 1.96 W, the σ-polarized laser starts oscillation. The measured optical spectrum for the σ-polarized laser is shown in Fig. 7(b), and the central wavelength is 2066 nm. Decreasing pump power from 1.96 to 1.75 W, the output power of σ-polarized laser increases from zero to 47 mW, however the output power of π-polarized laser decreases from 83mW to zero. The two orthogonal π- and σ-polarization states can coexist and complete the polarization switching in the range of 1.96-1.75 W. Further reducing the pump power to the off-threshold Poff = 1.6 W, the output power of σ-polarized laser drops from 17 mW to zero. So the PCS is experimentally realized in the free-running optical bistability Tm,Ho:LLF laser. The experimental results are in qualitative accordance with the numerical simulation results shown in Fig. 3, and the present theoretical analysis is confirmed to be reasonable.

 figure: Fig. 6

Fig. 6 Output power as a function of pump power for the optical bistability Tm,Ho:LLF laser with (a) increasing and (b) decreasing pump power.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7

Fig. 7 Output spectra for (a) 2069 nm π-polarized laser and (b) 2066 nm σ-polarized laser.

Download Full Size | PPT Slide | PDF

5. Conclusion

In summary, the polarization coexistence and switching between the orthogonal π- and σ-polarization states in the free-running optical bistability Tm,Ho:LLF laser is first theoretically and experimentally investigated. Based on the gain spectra and the coupled rate equations, the output power as a function of pump power is numerically simulated. The theoretical results predict that, in the process of decreasing pump power, the polarization coexistence and switching in the optical bistability Tm,Ho:LLF laser can be realized by selecting suitable mode-to-pump ratio and nondiffraction losses. The physical mechanism of polarization coexistence and switching is clarified, and it mainly resulted from the competition of polarization-dependent net gain between π- and σ-polarization states. The polarization coexistence and switching in the optical bistability Tm,Ho:LLF laser is experimentally realized, and the experimental results validate the present rate equation model. The theory model can also be used to other kinds of (quasi-) three-level optical bistable lasers with polarization coexistence and switching.

Funding

National Natural Science Foundation of China (61775166 and 61275138); 111 Project to the Harbin Engineering University (B13015); Program for Innovatative Research Team in University of Tianjin (TD13-5035).

References and links

1. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 microm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).

2. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37(36), 8460–8476 (1998).

3. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).

4. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, P. Bishnu, ed. (Intech, 2010).

5. V. Sudesh and K. Asai, “Spectroscopic and dioed-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study,” J. Opt. Soc. Am. B 20(9), 1829–1837 (2003).

6. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).

7. S. J. Shu, T. Yu, J. Y. Hou, R. T. Liu, M. J. Huang, and W. B. Chen, “End-pumped all solid-state high repetition rate Tm,Ho:LuLF laser,” Chin. Opt. Lett. 9(2), 021401 (2011).

8. X. Zhang, L. Yu, S. Zhang, L. Li, J. Zhao, and J. Cui, “Diode-pumped continuous wave and passively Q-switched Tm,Ho:LLF laser at 2 µm,” Opt. Express 21(10), 12629–12634 (2013).

9. X. Zhang, Y. Luo, T. Wang, J. Dai, J. Zhang, J. Li, J. Cui, and J. Huang, “Cr:ZnS saturable absorber passively Q-switched mode-locking Tm,Ho:LLF laser,” Appl. Opt. 56(11), 2973–2977 (2017).

10. X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

11. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

12. E. Weidner, S. Combrié, A. De Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).

13. L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett. 84(4), 607–609 (2004).

14. F. Y. Wang, G. X. Li, H. L. Tan, K. W. Cheah, and S. N. Zhu, “Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal,” Appl. Phys. Lett. 92(21), 211109 (2008).

15. M. Y. Vilensky, Y. Prior, and I. Sh. Averbukh, “Cooling in a bistable optical cavity,” Phys. Rev. Lett. 99(10), 103002 (2007).

16. E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and model,” Opt. Commun. 44(4), 277–282 (1983).

17. C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).

18. X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

19. J. Liu, V. Petrov, U. Griebner, F. Noack, H. Zhang, J. Wang, and M. Jiang, “Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser,” Opt. Express 14(25), 12183–12187 (2006).

20. J. Liu, H. Zhang, X. Mateos, W. Han, and V. Petrov, “Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal,” Opt. Lett. 33(16), 1810–1812 (2008).

21. J. Liu, W. Han, H. Zhang, H. Yang, and V. Petrov, “Study of the optical bistability in the laser oscillation of Yb:GdVO4 crystal,” Appl. Phys. B 98(1), 87–91 (2010).

22. X. Zhang and Y. Wang, “Optical bistability effects in a Tm,Ho:YLF laser at room temperature,” Opt. Lett. 32(16), 2333–2335 (2007).

23. X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

24. J. H. Liu and X. P. Tian, “Generalization of the modeling analysis of optical bistability in quasi-three-level laser,” IEEE J. Quantum Electron. 49(2), 247–251 (2013).

25. X. L. Zhang, L. Li, Y. Zheng, and Y. Z. Wang, “Formation mechanism of optical bistability in end-pumped quasi-three-level Tm,Ho:YLF lasers,” J. Opt. Soc. Am. B 26(12), 2434–2439 (2009).

26. M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

27. M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

28. P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

29. H. Zhao and A. Major, “Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing,” Appl. Phys. B 122(6), 163 (2016).

30. J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF4 2 µm laser,” Opt. Lett. 35(3), 420–422 (2010).

31. X. L. Zhang, Y. Z. Wang, L. Li, and Y. L. Ju, “Heat generation and thermal lensing in end-pumped Tm,Ho:YLF laser crystals,” J. Phys. D Appl. Phys. 40(22), 6930–6935 (2007).

32. Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. At. Mol. Opt. Phys. 44(13), 135401 (2011).

References

  • View by:

  1. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 microm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
  2. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37(36), 8460–8476 (1998).
  3. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
  4. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, P. Bishnu, ed. (Intech, 2010).
  5. V. Sudesh and K. Asai, “Spectroscopic and dioed-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study,” J. Opt. Soc. Am. B 20(9), 1829–1837 (2003).
  6. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
  7. S. J. Shu, T. Yu, J. Y. Hou, R. T. Liu, M. J. Huang, and W. B. Chen, “End-pumped all solid-state high repetition rate Tm,Ho:LuLF laser,” Chin. Opt. Lett. 9(2), 021401 (2011).
  8. X. Zhang, L. Yu, S. Zhang, L. Li, J. Zhao, and J. Cui, “Diode-pumped continuous wave and passively Q-switched Tm,Ho:LLF laser at 2 µm,” Opt. Express 21(10), 12629–12634 (2013).
  9. X. Zhang, Y. Luo, T. Wang, J. Dai, J. Zhang, J. Li, J. Cui, and J. Huang, “Cr:ZnS saturable absorber passively Q-switched mode-locking Tm,Ho:LLF laser,” Appl. Opt. 56(11), 2973–2977 (2017).
  10. X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).
  11. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
  12. E. Weidner, S. Combrié, A. De Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).
  13. L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett. 84(4), 607–609 (2004).
  14. F. Y. Wang, G. X. Li, H. L. Tan, K. W. Cheah, and S. N. Zhu, “Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal,” Appl. Phys. Lett. 92(21), 211109 (2008).
  15. M. Y. Vilensky, Y. Prior, and I. Sh. Averbukh, “Cooling in a bistable optical cavity,” Phys. Rev. Lett. 99(10), 103002 (2007).
  16. E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and model,” Opt. Commun. 44(4), 277–282 (1983).
  17. C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).
  18. X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
  19. J. Liu, V. Petrov, U. Griebner, F. Noack, H. Zhang, J. Wang, and M. Jiang, “Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser,” Opt. Express 14(25), 12183–12187 (2006).
  20. J. Liu, H. Zhang, X. Mateos, W. Han, and V. Petrov, “Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal,” Opt. Lett. 33(16), 1810–1812 (2008).
  21. J. Liu, W. Han, H. Zhang, H. Yang, and V. Petrov, “Study of the optical bistability in the laser oscillation of Yb:GdVO4 crystal,” Appl. Phys. B 98(1), 87–91 (2010).
  22. X. Zhang and Y. Wang, “Optical bistability effects in a Tm,Ho:YLF laser at room temperature,” Opt. Lett. 32(16), 2333–2335 (2007).
  23. X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).
  24. J. H. Liu and X. P. Tian, “Generalization of the modeling analysis of optical bistability in quasi-three-level laser,” IEEE J. Quantum Electron. 49(2), 247–251 (2013).
  25. X. L. Zhang, L. Li, Y. Zheng, and Y. Z. Wang, “Formation mechanism of optical bistability in end-pumped quasi-three-level Tm,Ho:YLF lasers,” J. Opt. Soc. Am. B 26(12), 2434–2439 (2009).
  26. M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).
  27. M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).
  28. P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).
  29. H. Zhao and A. Major, “Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing,” Appl. Phys. B 122(6), 163 (2016).
  30. J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF4 2 µm laser,” Opt. Lett. 35(3), 420–422 (2010).
  31. X. L. Zhang, Y. Z. Wang, L. Li, and Y. L. Ju, “Heat generation and thermal lensing in end-pumped Tm,Ho:YLF laser crystals,” J. Phys. D Appl. Phys. 40(22), 6930–6935 (2007).
  32. Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. At. Mol. Opt. Phys. 44(13), 135401 (2011).

2017 (1)

2016 (1)

H. Zhao and A. Major, “Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing,” Appl. Phys. B 122(6), 163 (2016).

2014 (2)

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

2013 (4)

X. Zhang, L. Yu, S. Zhang, L. Li, J. Zhao, and J. Cui, “Diode-pumped continuous wave and passively Q-switched Tm,Ho:LLF laser at 2 µm,” Opt. Express 21(10), 12629–12634 (2013).

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

J. H. Liu and X. P. Tian, “Generalization of the modeling analysis of optical bistability in quasi-three-level laser,” IEEE J. Quantum Electron. 49(2), 247–251 (2013).

2012 (1)

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

2011 (2)

Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. At. Mol. Opt. Phys. 44(13), 135401 (2011).

S. J. Shu, T. Yu, J. Y. Hou, R. T. Liu, M. J. Huang, and W. B. Chen, “End-pumped all solid-state high repetition rate Tm,Ho:LuLF laser,” Chin. Opt. Lett. 9(2), 021401 (2011).

2010 (2)

J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF4 2 µm laser,” Opt. Lett. 35(3), 420–422 (2010).

J. Liu, W. Han, H. Zhang, H. Yang, and V. Petrov, “Study of the optical bistability in the laser oscillation of Yb:GdVO4 crystal,” Appl. Phys. B 98(1), 87–91 (2010).

2009 (1)

2008 (2)

J. Liu, H. Zhang, X. Mateos, W. Han, and V. Petrov, “Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal,” Opt. Lett. 33(16), 1810–1812 (2008).

F. Y. Wang, G. X. Li, H. L. Tan, K. W. Cheah, and S. N. Zhu, “Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal,” Appl. Phys. Lett. 92(21), 211109 (2008).

2007 (5)

M. Y. Vilensky, Y. Prior, and I. Sh. Averbukh, “Cooling in a bistable optical cavity,” Phys. Rev. Lett. 99(10), 103002 (2007).

E. Weidner, S. Combrié, A. De Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).

X. Zhang and Y. Wang, “Optical bistability effects in a Tm,Ho:YLF laser at room temperature,” Opt. Lett. 32(16), 2333–2335 (2007).

X. L. Zhang, Y. Z. Wang, L. Li, and Y. L. Ju, “Heat generation and thermal lensing in end-pumped Tm,Ho:YLF laser crystals,” J. Phys. D Appl. Phys. 40(22), 6930–6935 (2007).

2006 (2)

2004 (2)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).

L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett. 84(4), 607–609 (2004).

2003 (2)

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

V. Sudesh and K. Asai, “Spectroscopic and dioed-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study,” J. Opt. Soc. Am. B 20(9), 1829–1837 (2003).

2001 (1)

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

2000 (1)

1998 (1)

1983 (1)

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and model,” Opt. Commun. 44(4), 277–282 (1983).

Aguiló, M.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

Akimov, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

Arimondo, E.

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and model,” Opt. Commun. 44(4), 277–282 (1983).

Asai, K.

Averbukh, I. Sh.

M. Y. Vilensky, Y. Prior, and I. Sh. Averbukh, “Cooling in a bistable optical cavity,” Phys. Rev. Lett. 99(10), 103002 (2007).

Bai, Y.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).

Bozano, L. D.

L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett. 84(4), 607–609 (2004).

Budni, P. A.

Carvajal, J. J.

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

Cassette, S.

E. Weidner, S. Combrié, A. De Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).

Cheah, K. W.

F. Y. Wang, G. X. Li, H. L. Tan, K. W. Cheah, and S. N. Zhu, “Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal,” Appl. Phys. Lett. 92(21), 211109 (2008).

Chen, S.

Chen, W. B.

Cheng, J.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

Chicklis, E. P.

Clarkson, W. A.

Combrié, S.

E. Weidner, S. Combrié, A. De Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).

Cui, J.

Cui, J. H.

X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

Dai, J.

De Rossi, A.

E. Weidner, S. Combrié, A. De Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).

Deline, V. R.

L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett. 84(4), 607–609 (2004).

Díaz, F.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

Dijkhuis, J. I.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

Dinelli, B. M.

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and model,” Opt. Commun. 44(4), 277–282 (1983).

Dong, G. Z.

X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

Frogley, M. D.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).

Golubev, V. G.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

Griebner, U.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

J. Liu, V. Petrov, U. Griebner, F. Noack, H. Zhang, J. Wang, and M. Jiang, “Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser,” Opt. Express 14(25), 12183–12187 (2006).

Han, W.

J. Liu, W. Han, H. Zhang, H. Yang, and V. Petrov, “Study of the optical bistability in the laser oscillation of Yb:GdVO4 crystal,” Appl. Phys. B 98(1), 87–91 (2010).

J. Liu, H. Zhang, X. Mateos, W. Han, and V. Petrov, “Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal,” Opt. Lett. 33(16), 1810–1812 (2008).

Hopkinson, M.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).

Hou, J. Y.

Huang, J.

Huang, M. J.

Huang, X.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

Jiang, M.

Ju, Y. L.

X. L. Zhang, Y. Z. Wang, L. Li, and Y. L. Ju, “Heat generation and thermal lensing in end-pumped Tm,Ho:YLF laser crystals,” J. Phys. D Appl. Phys. 40(22), 6930–6935 (2007).

Kadankov, M.

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

Kavaya, M. J.

Kean, B. W.

L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett. 84(4), 607–609 (2004).

Kerst, R.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

Killinger, D. K.

Kim, J. W.

Kuleshov, N. V.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

Kundys, D. O.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).

Kurdyukov, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

Lemons, M. L.

Lester, L. F.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

Li, G. X.

X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

F. Y. Wang, G. X. Li, H. L. Tan, K. W. Cheah, and S. N. Zhu, “Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal,” Appl. Phys. Lett. 92(21), 211109 (2008).

Li, H.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

Li, J.

Li, L.

X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

X. Zhang, L. Yu, S. Zhang, L. Li, J. Zhao, and J. Cui, “Diode-pumped continuous wave and passively Q-switched Tm,Ho:LLF laser at 2 µm,” Opt. Express 21(10), 12629–12634 (2013).

X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

X. L. Zhang, L. Li, Y. Zheng, and Y. Z. Wang, “Formation mechanism of optical bistability in end-pumped quasi-three-level Tm,Ho:YLF lasers,” J. Opt. Soc. Am. B 26(12), 2434–2439 (2009).

X. L. Zhang, Y. Z. Wang, L. Li, and Y. L. Ju, “Heat generation and thermal lensing in end-pumped Tm,Ho:YLF laser crystals,” J. Phys. D Appl. Phys. 40(22), 6930–6935 (2007).

Liu, G. T.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

Liu, J.

Liu, J. H.

J. H. Liu and X. P. Tian, “Generalization of the modeling analysis of optical bistability in quasi-three-level laser,” IEEE J. Quantum Electron. 49(2), 247–251 (2013).

Liu, R. T.

Loiko, P. A.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

Luo, Y.

Mackenzie, J. I.

Major, A.

H. Zhao and A. Major, “Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing,” Appl. Phys. B 122(6), 163 (2016).

Malloy, K. L.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

Mateos, X.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

J. Liu, H. Zhang, X. Mateos, W. Han, and V. Petrov, “Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal,” Opt. Lett. 33(16), 1810–1812 (2008).

Mazurenko, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

Miller, C. A.

Modlin, E. A.

Mosto, J. R.

Noack, F.

Parisi, D.

Pavlyuk, A. A.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

Petros, M.

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 microm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).

Petrov, V.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

J. Liu, W. Han, H. Zhang, H. Yang, and V. Petrov, “Study of the optical bistability in the laser oscillation of Yb:GdVO4 crystal,” Appl. Phys. B 98(1), 87–91 (2010).

J. Liu, H. Zhang, X. Mateos, W. Han, and V. Petrov, “Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal,” Opt. Lett. 33(16), 1810–1812 (2008).

J. Liu, V. Petrov, U. Griebner, F. Noack, H. Zhang, J. Wang, and M. Jiang, “Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser,” Opt. Express 14(25), 12183–12187 (2006).

Petzar, P. J.

Pevtsov, A. B.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

Phillips, C. C.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).

Pomeranz, L. A.

Prior, Y.

M. Y. Vilensky, Y. Prior, and I. Sh. Averbukh, “Cooling in a bistable optical cavity,” Phys. Rev. Lett. 99(10), 103002 (2007).

Pujol, M. C.

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

Rice, A.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

Salem, J. R.

L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett. 84(4), 607–609 (2004).

Scott, J. C.

L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett. 84(4), 607–609 (2004).

Segura, M.

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

Sel’kin, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

Shu, S. J.

Singh, U. N.

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 microm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).

Skolnick, M. S.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).

Stintz, A.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

Sudesh, V.

Taczak, T. M.

Tan, H. L.

F. Y. Wang, G. X. Li, H. L. Tan, K. W. Cheah, and S. N. Zhu, “Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal,” Appl. Phys. Lett. 92(21), 211109 (2008).

Tian, X. P.

J. H. Liu and X. P. Tian, “Generalization of the modeling analysis of optical bistability in quasi-three-level laser,” IEEE J. Quantum Electron. 49(2), 247–251 (2013).

Tonelli, M.

Tran, N.

E. Weidner, S. Combrié, A. De Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).

Trieu, B. C.

Veronesi, S.

Vilensky, M. Y.

M. Y. Vilensky, Y. Prior, and I. Sh. Averbukh, “Cooling in a bistable optical cavity,” Phys. Rev. Lett. 99(10), 103002 (2007).

Walsh, B. M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).

Wang, F. Y.

F. Y. Wang, G. X. Li, H. L. Tan, K. W. Cheah, and S. N. Zhu, “Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal,” Appl. Phys. Lett. 92(21), 211109 (2008).

Wang, J.

Wang, R.

X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

Wang, T.

Wang, Y.

Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. At. Mol. Opt. Phys. 44(13), 135401 (2011).

X. Zhang and Y. Wang, “Optical bistability effects in a Tm,Ho:YLF laser at room temperature,” Opt. Lett. 32(16), 2333–2335 (2007).

Wang, Y. Z.

X. L. Zhang, L. Li, Y. Zheng, and Y. Z. Wang, “Formation mechanism of optical bistability in end-pumped quasi-three-level Tm,Ho:YLF lasers,” J. Opt. Soc. Am. B 26(12), 2434–2439 (2009).

X. L. Zhang, Y. Z. Wang, L. Li, and Y. L. Ju, “Heat generation and thermal lensing in end-pumped Tm,Ho:YLF laser crystals,” J. Phys. D Appl. Phys. 40(22), 6930–6935 (2007).

Weidner, E.

E. Weidner, S. Combrié, A. De Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).

Wilson, L. R.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).

Xie, Z. L.

X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

Yang, H.

J. Liu, W. Han, H. Zhang, H. Yang, and V. Petrov, “Study of the optical bistability in the laser oscillation of Yb:GdVO4 crystal,” Appl. Phys. B 98(1), 87–91 (2010).

Yu, J.

J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 microm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).

Yu, L.

X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

X. Zhang, L. Yu, S. Zhang, L. Li, J. Zhao, and J. Cui, “Diode-pumped continuous wave and passively Q-switched Tm,Ho:LLF laser at 2 µm,” Opt. Express 21(10), 12629–12634 (2013).

X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

Yu, T.

Yumashev, K. V.

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

Zervos, C.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).

Zhang, H.

Zhang, J.

Zhang, R.

Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. At. Mol. Opt. Phys. 44(13), 135401 (2011).

Zhang, S.

X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

X. Zhang, L. Yu, S. Zhang, L. Li, J. Zhao, and J. Cui, “Diode-pumped continuous wave and passively Q-switched Tm,Ho:LLF laser at 2 µm,” Opt. Express 21(10), 12629–12634 (2013).

X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

Zhang, X.

Zhang, X. L.

X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

X. L. Zhang, L. Li, Y. Zheng, and Y. Z. Wang, “Formation mechanism of optical bistability in end-pumped quasi-three-level Tm,Ho:YLF lasers,” J. Opt. Soc. Am. B 26(12), 2434–2439 (2009).

X. L. Zhang, Y. Z. Wang, L. Li, and Y. L. Ju, “Heat generation and thermal lensing in end-pumped Tm,Ho:YLF laser crystals,” J. Phys. D Appl. Phys. 40(22), 6930–6935 (2007).

Zhao, H.

H. Zhao and A. Major, “Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing,” Appl. Phys. B 122(6), 163 (2016).

Zhao, J.

Zhao, J. Q.

X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

Zheng, Y.

Zhu, S. N.

F. Y. Wang, G. X. Li, H. L. Tan, K. W. Cheah, and S. N. Zhu, “Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal,” Appl. Phys. Lett. 92(21), 211109 (2008).

Appl. Opt. (2)

Appl. Phys. B (3)

J. Liu, W. Han, H. Zhang, H. Yang, and V. Petrov, “Study of the optical bistability in the laser oscillation of Yb:GdVO4 crystal,” Appl. Phys. B 98(1), 87–91 (2010).

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Dual-wavelength diode-pumped laser operation of Np-cut and Ng-cut Tm:KLu(WO4)2, crystals,” Appl. Phys. B 113(1), 125–131 (2013).

H. Zhao and A. Major, “Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing,” Appl. Phys. B 122(6), 163 (2016).

Appl. Phys. Lett. (4)

E. Weidner, S. Combrié, A. De Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90(10), 101118 (2007).

L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett. 84(4), 607–609 (2004).

F. Y. Wang, G. X. Li, H. L. Tan, K. W. Cheah, and S. N. Zhu, “Optical bistability and multistability in one-dimensional periodic metal-dielectric photonic crystal,” Appl. Phys. Lett. 92(21), 211109 (2008).

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade lasers,” Appl. Phys. Lett. 90(5), 053505 (2007).

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (3)

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. L. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).

P. A. Loiko, X. Mateos, N. V. Kuleshov, A. A. Pavlyuk, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Thermal-lens-driven effects in Ng-cut Yb- and Tm-doped monoclinic KLu(WO4)2 crystals,” IEEE J. Quantum Electron. 50(8), 669–676 (2014).

J. H. Liu and X. P. Tian, “Generalization of the modeling analysis of optical bistability in quasi-three-level laser,” IEEE J. Quantum Electron. 49(2), 247–251 (2013).

J. Appl. Phys. (1)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).

J. Opt. Soc. Am. B (3)

J. Phys. At. Mol. Opt. Phys. (1)

Y. Wang and R. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. At. Mol. Opt. Phys. 44(13), 135401 (2011).

J. Phys. D Appl. Phys. (1)

X. L. Zhang, Y. Z. Wang, L. Li, and Y. L. Ju, “Heat generation and thermal lensing in end-pumped Tm,Ho:YLF laser crystals,” J. Phys. D Appl. Phys. 40(22), 6930–6935 (2007).

Laser Phys. Lett. (3)

X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, J. H. Cui, G. Z. Dong, and R. Wang, “Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 10(12), 125801 (2013).

M. Segura, M. Kadankov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Polarization switching in the 2-μm Tm:KLu (WO4)2 laser,” Laser Phys. Lett. 9(2), 104–109 (2012).

X. L. Zhang, S. Zhang, Z. L. Xie, G. X. Li, L. Yu, J. H. Cui, J. Q. Zhao, and L. Li, “Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser,” Laser Phys. Lett. 11(10), 105804 (2014).

Opt. Commun. (1)

E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: experiment and model,” Opt. Commun. 44(4), 277–282 (1983).

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).

M. Y. Vilensky, Y. Prior, and I. Sh. Averbukh, “Cooling in a bistable optical cavity,” Phys. Rev. Lett. 99(10), 103002 (2007).

Other (1)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, P. Bishnu, ed. (Intech, 2010).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Gain spectra of Tm,Ho:LLF for (a) π-polarization and (b) σ-polarization for inversion parameters β = 0.2, 0.25, 0.3 and 0.4.
Fig. 2
Fig. 2 Calculated diffraction losses as a function of pump power for the π- and σ-polarizations.
Fig. 3
Fig. 3 Calculated output power as a function of pump power for the Tm,Ho:LLF laser with (a) increasing and (b) decreasing pump power, showing polarization coexistence and switching, and optical bistability.
Fig. 4
Fig. 4 Calculated (a) total, (b) π-polarization, and (c) σ-polarization net gain coefficients as a function of pump power.
Fig. 5
Fig. 5 Experimental setup of the optical bistability Tm,Ho:LLF laser.
Fig. 6
Fig. 6 Output power as a function of pump power for the optical bistability Tm,Ho:LLF laser with (a) increasing and (b) decreasing pump power.
Fig. 7
Fig. 7 Output spectra for (a) 2069 nm π-polarized laser and (b) 2066 nm σ-polarized laser.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

G = ( N H o l ) σ e m ( λ ) [ β ( 1 β ) Z e x c Z g n d exp ( ( E Z L 1 λ ) h c / k b T ) ]
d N 1 d t = η p R r p ( r , z ) N 1 τ Q N 1 2 σ π c n [ f H o ( f u π + f l π ) N 1 f l π N H o ] Φ π φ l ( r , z ) σ σ c n [ f H o ( f u σ + f l σ ) N 1 f l σ N H o ] Φ σ φ l ( r , z )
d N 2 d t = η p R r p ( r , z ) N 2 τ Q N 2 2 σ π c n [ f H o ( f u π + f l π ) N 2 f l π N H o ] Φ π φ l ( r , z ) σ σ c n [ f H o ( f u σ + f l σ ) N 2 f l σ N H o ] Φ σ φ l ( r , z )
d Φ d t = σ π c Φ π n V 1 Δ N 1 π ϕ l ( r , z ) d V + σ π c Φ π n V 2 Δ N 2 π ϕ l ( r , z ) d V - Φ π τ c π + σ σ c Φ σ n V 1 Δ N 1 σ ϕ l ( r , z ) d V + σ σ c Φ σ n V 2 Δ N 2 σ ϕ l ( r , z ) d V - Φ σ τ c σ
r p ( r , z ) = 2 α η α π ω p 2 ( z ) exp [ 2 r 2 ω p 2 ( z ) ] exp ( α z )
ω p 2 ( z ) = ω p 0 2 + [ λ p ( z d ) π ω p 0 2 ] 2
ϕ l ( r , z ) = 2 π ω l 2 l e f f exp ( 2 r 2 ω l 2 )
τ c π / σ = 2 l e f f c δ π / σ
δ π / σ = δ f π / σ + δ d π / σ + ln ( 1 1 T O C )
δ d = 1 | 0 r b e i Δ φ ( r ) e 2 r 2 / ω l 2 r d r 0 r b e 2 r 2 / ω l 2 r d r | 2
Δ φ ( r ) = d n d T ξ P i n η α K c λ ( 1 + ln r b 2 ω p 2 ) ( r ω P )
Δ φ ( r ) = d n d T ξ P i n η α K c λ ( r 2 ω p 2 + ln r b 2 r 2 ) ( r ω P )
G T o t a l = Φ π G π + Φ σ G σ Φ = Φ π G π + Φ σ G σ Φ π + Φ σ
G π = σ π n V 1 Δ N 1 π φ l ( r , z ) d V
G σ = σ σ n V 1 Δ N 1 σ φ l ( r , z ) d V
L T o t a l = Φ π L π + Φ σ L σ Φ = Φ π L π + Φ σ L σ Φ π + Φ σ
L π = σ π n V 2 Δ N 2 π φ l ( r , z ) d V + δ π 2 l e f f
L σ = σ σ n V 2 Δ N 2 σ φ l ( r , z ) d V + δ σ 2 l e f f
G N = G T o t a l L T o t a l
G N π = G π L π
G N σ = G σ L σ

Metrics