Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface

Open Access Open Access

Abstract

We report the design, fabrication, and measurement of an ultra-broadband wide-angle reflective cross-polarization convertor using the compact H-shaped metasurface. The significant bandwidth expansion is attributed to the four electromagnetic resonances generated in an H-shaped unit. The simulation results show that the polarization conversion ratio (PCR) of the proposed metasurface is above 90% in the frequency range from 7 to 19.5 GHz and the relative bandwidth reaches 94%. The proposed metasurface is valid for a wide range of incident angles, and the mean polarization conversion ratio remains 80% even though the incident angle reaches 41.5°. The experimental results are in good agreement with the simulation results. Compared with the previous designs, the proposed linear polarization converter has a simple geometry but an excellent performance and hence has potential applications in microwave communications, remote sensors, and imaging systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The polarization of electromagnetic (EM) waves refers to the oscillating direction of the electric field in a plane perpendicular to the propagation direction [1]. Effective controlling and manipulating the polarization state of EM waves is highly desirable because many fascinating phenomena are inherently sensitive to polarization [2,3]. Conventional polarization devices are achieved by using birefringent crystals based on Faraday effects [4], which are usually bulky in size and bring much difficulty in miniaturization [5–7]. Recently, metamaterial, artificially designed with subwavelength meta-atoms, has achieved many exotic phenomena and functionalities that cannot be found in conventional materials, such as negative refraction [8], superlens [9], invisibility cloak [10,11], perfect absorption [12] and so on. Thus, metamaterial also provides a potential way to manipulate the polarization state of EM waves [13–15].

On the basis of metamaterial technology, controlling the polarization state of EM waves has attracted great attention and achieved significant progress in recent years. In general, there are two metamaterials configuration for polarization manipulation, transmission mode and reflection mode. For the transmission mode, the polarization convertors can be divided into two categories, in which one is based on the birefringence effect of anisotropic MMs and the other is based on the optical activity of chiral MMs [16–22]. However, neither design can realize wide bandwidth and high efficiency simultaneously. For the reflection mode, there are three main approaches to realizing polarization conversion. One of these approaches is using single-layer metasurfaces, including dual-band [23], Multi-band [24], and broadband polarization converters [25–37]. To expand the bandwidth, many studies have been reported, such as ring/disk cavity structure [28], double V-shaped patches [32], double U-shaped MMs [34], and cut-wire structure [35]. However, most of them cannot realize the ultra-broadband, wide-angle, high-efficiency, and simple-geometry simultaneously. The topology design based on symmetry coding has been presented as another way to realize reflective polarization conversion [38,39]. However, the PCR is under 90% at several frequencies of operating bands. The third method to observe reflective polarization conversion is using multi-layer structures consisting of different metasurface layers [40]. However, the multi-layer structure is limited by complicated fabrication.

In this letter, we propose an ultra-broadband wide-angle linear polarization convertor that uses metasurfaces composed of H-shaped resonators. Compared with the first reflective cross-polarization convertor (which is also composed of H-shaped resonators) that only works in two narrow bands [23], the as-proposed polarization convertor shows much more advance in bandwidth. The broadband transform effect is attributed to the overlap of four polarization rotation resonances generated in an H-shaped unit. Both the numerical simulation and experimental results show that the PCR of the proposed polarization convertor is above 90% in the frequency range from 7 to 19.5 GHz. In addition, the proposed polarizer is valid to a wide range of incident angles, and the mean polarization conversion ratio remains 80% even though the incident angle reaches 41.5°. Since the proposed polarizer is extremely thin and robust to the angle, it is convenient for integration within other ultra-thin devices.

2. Modeling, simulation and experiment

Figure 1(a) schematically demonstrates the structure of the proposed polarization converter, which is composed of a top metasurface and a bottom continuous metallic layer separated by a dielectric layer. When a plane wave with a prescribed polarization illuminates the metasurfce, the reflected wave can be converted to its cross-polarization. Figure 1(b) shows the photograph of the fabricated polarization converter, which has an overall size of 291.2 × 291.2 mm2 and contains 32 × 32 unit cells. The dielectric layer is F4B-2 with relative permittivity of 2.65 and loss tangent of 0.002. The 17 μm thick copper film with an electric conductivity σ = 5.8 × 107 S/m is used as the metallic layer. The inset of Fig. 1(b) shows a unit cell of the design. The periodicity of the structure is p = 9.1 mm. The thickness of the dielectric is t = 3.5 mm. Other geometrical dimensions are presented in Fig. 1(b), in which a = 6.8 mm, b = 4.5 mm, w = 0.3 mm, and g = 1.0 mm.

 figure: Fig. 1

Fig. 1 (a) Scheme of the proposed polarization converter under the illumination of a linearly polarized wave. (b) Photograph of the fabricated sample. The inset shows a unit cell of the design. (c) Schematic demonstration of the measurement setup.

Download Full Size | PPT Slide | PDF

Figure 1(c) shows the schematic of the measurement setup, which is carried out in an anechoic chamber to avoid electromagnetic interference. The testing system contains a vector network analyzer (N5230A) and two standard gain horn antennas. One of the horn antennas is used to emit x- or y- polarized EM waves at nearly normal incidence (the oblique angle is less than 10°), and the other horn antenna is used to receive x- and y- polarized EM waves. The reflection coefficients are measured through the vector network analyzer. Since the unit cell of the design is symmetric along the diagonal direction, we only need to consider the situation that a y-polarized plane wave illuminates the structure. We define ryy = |Eyr|/|Eyi| as the reflection coefficient for co-polarization, where |Eyi| and |Eyr| correspond to the magnitude of incident and reflected electric fields in the y direction, respectively. In addition, we define rxy = |Exr|/|Eyi| as the reflection coefficient for cross-polarization, where |Exr| represents the magnitude of reflected electric field in the x direction.

Figure 2(a) shows the measured cross-polarized (rxy) and co-polarized (ryy) amplitude reflection spectra, which are in good agreement with the simulation results based on Finite-Difference Time-Domain (FDTD) method. It is observed that the co-polarization (ryy) is lower than −10 dB and the cross-polarization (rxy) is higher than −1 dB in the frequency range from 7 to 19.5 GHz, which means that the illuminated y-polarized wave has been efficiently converted to x-polarized wave after reflection. Furthermore, four resonant frequencies (ryy0 and rxy1) can be found at 7.19 GHz, 9.10 GHz, 14.08 GHz, and 18.92 GHz, respectively, which means the conversion efficiency is extremely high at these four frequencies.

 figure: Fig. 2

Fig. 2 The simulated and experimental results of the proposed polarization converter. (a) Cross-polarized (rxy) and co-polarized (ryy) amplitude reflection spectra. (b) Polarization conversion rate (PCR) spectra.

Download Full Size | PPT Slide | PDF

The polarization conversion rate (PCR) is often used to evaluate the efficiency of a polarization converter, which is defined as PCR = rxy2/(rxy2 + ryy2) [23]. Figure 2(b) shows the measured PCR of the proposed design, which is in good agreement with the simulated result. As expected, the PCR is above 90% in the frequency range from 7 to 19.5 GHz, and reaches near unity at the four resonance frequencies. The relative bandwidth is up to 94% (PCR>90%), which is broader than the previous designs [28–35]. A small discrepancy between the experiment and simulation can be found in Fig. 2, which is attributed to the following two reasons. First, an ideal normally incident plane wave is used in simulation, which cannot be achieved in experiment since the two antenna horns cannot be reunited. Second, the geometry of the proposed design is unlimited in simulation; however, the fabricated sample has a finite size.

Furthermore, compared with the other polarization converters, the proposed one demonstrates better performance with simple geometry. Table 1 presents a comparison between the proposed converter and other reported reflective linear polarization converters in microwave frequency ranges. From the comparison, it can be observed that the proposed converter has an ultra-wide frequency band in which the PCR is greater than 90%, indicating a better performance.

Tables Icon

Table 1. Comparison with other wideband polarization converters

3. Discussion

Figure 3 schematically shows the working principle of the proposed polarization converter. The normally incident y-polarized EM wave, can be decomposed into two perpendicular components as Ei=u^Eiuejϕ+v^Eivejϕ, and accordingly the reflected wave can be expressed as Er=u^ruEiuej(ϕ+φu)+v^rvEivej(ϕ+φv). Here, u^ and v^ indicate two directions that are rotated 45° in the counterclockwise direction from the x-axis and y-axis, respectively. ru and rv mean the reflected coefficients along the u-axis and v-axis, respectively. The proposed polarization converter can be treated as an anisotropic material with dispersive relative permittivity and permeability due to the asymmetric of the structure, thus leading to a phase difference (Δφ = |φuφr|) between ru and rv. If rurv and Δφ = 180°, either Eru or Erv will be opposite to their incident direction, then the synthetic field Er will be along the x-direction, as shown in Fig. 3(a). In other words, the oscillation direction of electric field is rotated 90° after reflection by the structure. Figure 3(b) gives the reflection amplitudes and phase difference (Δφ), when the incident plane EM wave is polarized along the u- and v-axis, respectively. It can be seen that the reflection amplitudes are nearly equal to one and the phase difference is roughly 180° from 7 to 19.5 GHz, which leads to an ultra-broadband and high-efficiency polarization conversion. In particular, at the resonance frequencies of 7.19 GHz, 9.10 GHz, 14.08 GHz and 18.92 GHz, the phase difference is close to 180°.

 figure: Fig. 3

Fig. 3 (a) The working principle of the polarization converter. (b) The reflected amplitudes and phase difference, when the electric field of incident waves along u-axis and v-axis, respectively.

Download Full Size | PPT Slide | PDF

To understand the physical mechanism of the proposed polarization converter, we then simulated the surface current distributions on the top metasurface and bottom layer at resonant frequencies of 7.19 GHz, 9.10 GHz, 14.08 GHz, and 18.92 GHz, respectively, as shown in Fig. 4. We can see that the surface currents along the H-shaped resonator are antiparallel to those on the background sheet at 7.19 GHz and 9.10 GHz. It means that they are forming current loops in the intermediate dielectric layer, which is known as magnetic resonance. In contrast, the surface currents along the H-shaped resonator are parallel to those on the background sheet at 14.08 GHz and 18.92 GHz, which corresponds to electric resonance. These four resonances are vital to realize high-efficiency and wide-bandwidth. Actually, the broad bandwidth enhancement operation results from the superposition of multiple PCR peaks around resonance frequencies.

 figure: Fig. 4

Fig. 4 Distributions of the surface current on the metallic parts of the metasurface unit cell and metallic ground sheet at four resonant frequencies: (a) 7.10 GHz, (b) 9.10 GHz, (c) 14.08 GHz, and (d) 18.92 GHz.

Download Full Size | PPT Slide | PDF

It is important to investigate the angular dependence of the proposed H-shaped polarization converter. Figures 5(a) and 5(b) show the simulated reflection map of ryy and rxy as a function of the frequency and of the incident angle. We can see that the bandwidth of the proposed polarization converter is slightly reduced with the increase of the incident angle, which is attributed to the destructive interference at the surface of the metasurface under oblique incidence. At higher frequencies, the destructive interference affects more drastically when incident angle is increased. In addition, from Figs. 5(a) and 5(b) we find that a dip simultaneously appears at around 12.7 GHz, which implies a strong absorption. In order to quantify the conversion efficiency of the proposed polarization converter under oblique incidence, Fig. 5(c) shows the mean value of the reflectivity PCR in the frequency range from 7 to 19.5 GHz. It is clear that the mean PCR remains as high as 96% when the incident angle changes from 0 to 12.5°. Even though the incident angle reaches 41.5°, the mean PCR is still above 80%. Therefore, the proposed polarization converter has a good performance for oblique incidence.

 figure: Fig. 5

Fig. 5 Reflection map for (a) co-polarization (ryy) and (b) cross-polarization (rxy) as a function of the frequency and the angle of incidence. (c) Polar plot of simulated values of mean PCR in the frequency range from 7 to 19.5 GHz.

Download Full Size | PPT Slide | PDF

4. Summary

In conclusion, we have presented both theoretically and experimentally that array of H-shaped metasurface can convert the linear polarization of light with ultra-broadband and high-performance. The significant bandwidth expansion is attributed to the four electromagnetic resonances generated in an H-shaped unit. Both the numerical simulation and measurement results show that the PCR of the proposed metasurface is above 90% in the frequency range from 7 to 19.5 GHz and the relative bandwidth reaches 94%. We also investigated the performance of the proposed converter for oblique incidence, and found that the mean PCR remains above 80%, even though the incident angle reaches 41.5°. The proposed linear polarization converter has a simple geometry but an excellent performance and hence has many potential applications in the microwave, terahertz, and even optical frequencies.

Funding

National Natural Science Foundation of China (NSFC) (11304253); Fundamental Research Funds for the Central Universities (XDJK2016A019); Undergraduate Science and Technology Innovation Fund (201810635040, 20171802001).

References

1. M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008). [CrossRef]  

2. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013). [CrossRef]   [PubMed]  

3. L. Ren, Y. Jiao, F. Li, J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10(1), 407–410 (2011).

4. T. Meissner and F. J. Wentz, “Polarization rotation and the third stokes parameter: the effects of spacecraft attitude and faraday rotation,” IEEE Trans. Geosci. Remote Sens. 44(3), 506–515 (2006). [CrossRef]  

5. J. Xu, T. Li, F. F. Lu, S. M. Wang, and S. N. Zhu, “Manipulating optical polarization by stereo plasmonic structure,” Opt. Express 19(2), 748–756 (2011). [CrossRef]   [PubMed]  

6. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012). [CrossRef]  

7. J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012). [CrossRef]  

8. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef]   [PubMed]  

9. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005). [CrossRef]  

10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef]   [PubMed]  

11. H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018). [CrossRef]  

12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef]   [PubMed]  

13. X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015). [CrossRef]  

14. X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018). [CrossRef]   [PubMed]  

15. X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017). [CrossRef]   [PubMed]  

16. J. Y. Chin, M. Z. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008). [CrossRef]  

17. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009). [CrossRef]  

18. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010). [CrossRef]   [PubMed]  

19. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015). [CrossRef]   [PubMed]  

20. Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010). [CrossRef]  

21. H. Y. Shi, A. X. Zhang, S. Zheng, J. X. Li, and Y. S. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014). [CrossRef]  

22. S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018). [CrossRef]   [PubMed]  

23. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007). [CrossRef]   [PubMed]  

24. X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014). [CrossRef]  

25. P. Xu, S. Y. Wang, and W. Geyi, “A linear polarization converter with near unity efficiency in microwave regime,” J. Appl. Phys. 121(14), 144502 (2017). [CrossRef]  

26. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013). [CrossRef]   [PubMed]  

27. Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016). [CrossRef]  

28. X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013). [CrossRef]  

29. H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014). [CrossRef]   [PubMed]  

30. H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014). [CrossRef]  

31. L. B. Zhang, P. H. Zhou, H. P. Lu, H. Y. Chen, J. L. Xie, and L. J. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015). [CrossRef]  

32. X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015). [CrossRef]  

33. J. C. Zhao and Y. Z. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016). [CrossRef]  

34. Z. L. Mei, X. M. Ma, C. Lu, and Y. D. Zhao, “High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface,” AIP Adv. 7(12), 125323 (2017). [CrossRef]  

35. J. C. Zhao and Y. Z. Cheng, “Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region,” Optik (Stuttg.) 136, 52–57 (2017). [CrossRef]  

36. L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016). [CrossRef]   [PubMed]  

37. M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017). [CrossRef]  

38. S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016). [CrossRef]   [PubMed]  

39. S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016). [CrossRef]  

40. Y. T. Jia, Y. Liu, W. B. Zhang, and S. X. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016). [CrossRef]  

References

  • View by:

  1. M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
    [Crossref]
  2. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
    [Crossref] [PubMed]
  3. L. Ren, Y. Jiao, F. Li, J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10(1), 407–410 (2011).
  4. T. Meissner and F. J. Wentz, “Polarization rotation and the third stokes parameter: the effects of spacecraft attitude and faraday rotation,” IEEE Trans. Geosci. Remote Sens. 44(3), 506–515 (2006).
    [Crossref]
  5. J. Xu, T. Li, F. F. Lu, S. M. Wang, and S. N. Zhu, “Manipulating optical polarization by stereo plasmonic structure,” Opt. Express 19(2), 748–756 (2011).
    [Crossref] [PubMed]
  6. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
    [Crossref]
  7. J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
    [Crossref]
  8. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  9. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
    [Crossref]
  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  11. H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
    [Crossref]
  12. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  13. X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
    [Crossref]
  14. X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
    [Crossref] [PubMed]
  15. X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
    [Crossref] [PubMed]
  16. J. Y. Chin, M. Z. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
    [Crossref]
  17. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
    [Crossref]
  18. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  19. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
    [Crossref] [PubMed]
  20. Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  21. H. Y. Shi, A. X. Zhang, S. Zheng, J. X. Li, and Y. S. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
    [Crossref]
  22. S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
    [Crossref] [PubMed]
  23. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  24. X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
    [Crossref]
  25. P. Xu, S. Y. Wang, and W. Geyi, “A linear polarization converter with near unity efficiency in microwave regime,” J. Appl. Phys. 121(14), 144502 (2017).
    [Crossref]
  26. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  27. Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
    [Crossref]
  28. X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013).
    [Crossref]
  29. H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
    [Crossref] [PubMed]
  30. H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
    [Crossref]
  31. L. B. Zhang, P. H. Zhou, H. P. Lu, H. Y. Chen, J. L. Xie, and L. J. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
    [Crossref]
  32. X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
    [Crossref]
  33. J. C. Zhao and Y. Z. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
    [Crossref]
  34. Z. L. Mei, X. M. Ma, C. Lu, and Y. D. Zhao, “High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface,” AIP Adv. 7(12), 125323 (2017).
    [Crossref]
  35. J. C. Zhao and Y. Z. Cheng, “Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region,” Optik (Stuttg.) 136, 52–57 (2017).
    [Crossref]
  36. L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
    [Crossref] [PubMed]
  37. M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
    [Crossref]
  38. S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
    [Crossref] [PubMed]
  39. S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
    [Crossref]
  40. Y. T. Jia, Y. Liu, W. B. Zhang, and S. X. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
    [Crossref]

2018 (3)

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
[Crossref] [PubMed]

2017 (5)

P. Xu, S. Y. Wang, and W. Geyi, “A linear polarization converter with near unity efficiency in microwave regime,” J. Appl. Phys. 121(14), 144502 (2017).
[Crossref]

Z. L. Mei, X. M. Ma, C. Lu, and Y. D. Zhao, “High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface,” AIP Adv. 7(12), 125323 (2017).
[Crossref]

J. C. Zhao and Y. Z. Cheng, “Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region,” Optik (Stuttg.) 136, 52–57 (2017).
[Crossref]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
[Crossref]

2016 (6)

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Y. T. Jia, Y. Liu, W. B. Zhang, and S. X. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

J. C. Zhao and Y. Z. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

2015 (4)

L. B. Zhang, P. H. Zhou, H. P. Lu, H. Y. Chen, J. L. Xie, and L. J. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

2014 (4)

H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
[Crossref] [PubMed]

H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

H. Y. Shi, A. X. Zhang, S. Zheng, J. X. Li, and Y. S. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

2013 (3)

X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
[Crossref] [PubMed]

2012 (2)

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

2011 (2)

L. Ren, Y. Jiao, F. Li, J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10(1), 407–410 (2011).

J. Xu, T. Li, F. F. Lu, S. M. Wang, and S. N. Zhu, “Manipulating optical polarization by stereo plasmonic structure,” Opt. Express 19(2), 748–756 (2011).
[Crossref] [PubMed]

2010 (2)

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

2009 (1)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

2008 (3)

J. Y. Chin, M. Z. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

2006 (2)

T. Meissner and F. J. Wentz, “Polarization rotation and the third stokes parameter: the effects of spacecraft attitude and faraday rotation,” IEEE Trans. Geosci. Remote Sens. 44(3), 506–515 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (1)

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Alù, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Ambati, M.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Beruete, M.

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

Bozhevolnyi, S. I.

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Campillo, I.

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

Cao, W. P.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Cao, X. Y.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, H.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, H. Y.

L. B. Zhang, P. H. Zhou, H. P. Lu, H. Y. Chen, J. L. Xie, and L. J. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Chen, J. X.

X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013).
[Crossref]

Chen, S. Z.

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Chen, Z. N.

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Cheng, Y. Z.

J. C. Zhao and Y. Z. Cheng, “Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region,” Optik (Stuttg.) 136, 52–57 (2017).
[Crossref]

J. C. Zhao and Y. Z. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

Cheville, R. A.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Chin, J. Y.

J. Y. Chin, M. Z. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cui, T. J.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

J. Y. Chin, M. Z. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Deng, L.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Deng, L. J.

L. B. Zhang, P. H. Zhou, H. P. Lu, H. Y. Chen, J. L. Xie, and L. J. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Durant, S.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
[Crossref]

Fan, D. Y.

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Fang, N.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
[Crossref]

Feng, M. D.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Fraz, Q.

M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
[Crossref]

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Gao, X.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Geyi, W.

S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
[Crossref] [PubMed]

P. Xu, S. Y. Wang, and W. Geyi, “A linear polarization converter with near unity efficiency in microwave regime,” J. Appl. Phys. 121(14), 144502 (2017).
[Crossref]

Gong, S. X.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Y. T. Jia, Y. Liu, W. B. Zhang, and S. X. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Guo, Y. J.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Han, J. F.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Han, X.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Hao, Z. C.

X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013).
[Crossref]

He, S. L.

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hong, W.

X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013).
[Crossref]

Huang, K.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Huang, X. J.

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Jia, Y. T.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Y. T. Jia, Y. Liu, W. B. Zhang, and S. X. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jiang, W. X.

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

Jiang, Y. S.

H. Y. Shi, A. X. Zhang, S. Zheng, J. X. Li, and Y. S. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Jiao, Y.

L. Ren, Y. Jiao, F. Li, J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10(1), 407–410 (2011).

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Khan, M. I.

M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
[Crossref]

Kim, Y. J.

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Lee, H.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
[Crossref]

Li, E.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Li, F.

L. Ren, Y. Jiao, F. Li, J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10(1), 407–410 (2011).

Li, H. O.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Li, J.

Li, J. X.

H. Y. Shi, A. X. Zhang, S. Zheng, J. X. Li, and Y. S. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Li, K.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Li, S. J.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Li, T.

Li, Y. F.

H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Ling, X.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Ling, X. H.

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Liu, H. W.

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Liu, W.

S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
[Crossref] [PubMed]

Liu, X.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Liu, Y.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Y. T. Jia, Y. Liu, W. B. Zhang, and S. X. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Liu, Y. C.

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Lu, C.

Z. L. Mei, X. M. Ma, C. Lu, and Y. D. Zhao, “High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface,” AIP Adv. 7(12), 125323 (2017).
[Crossref]

Lu, F. F.

Lu, H.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Lu, H. P.

L. B. Zhang, P. H. Zhou, H. P. Lu, H. Y. Chen, J. L. Xie, and L. J. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Lu, M. Z.

J. Y. Chin, M. Z. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Luo, H.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Luo, H. L.

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Ma, H.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Ma, H. F.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

Ma, X. M.

Z. L. Mei, X. M. Ma, C. Lu, and Y. D. Zhao, “High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface,” AIP Adv. 7(12), 125323 (2017).
[Crossref]

Mei, Z. L.

Z. L. Mei, X. M. Ma, C. Lu, and Y. D. Zhao, “High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface,” AIP Adv. 7(12), 125323 (2017).
[Crossref]

Meissner, T.

T. Meissner and F. J. Wentz, “Polarization rotation and the third stokes parameter: the effects of spacecraft attitude and faraday rotation,” IEEE Trans. Geosci. Remote Sens. 44(3), 506–515 (2006).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Mutlu, M.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Navarro-Cia, M.

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

Nielsen, M. G.

Ozbay, E.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pang, Y. Q.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Plum, E.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Pors, A.

Qiu, C. W.

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Qu, S. B.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Ren, L.

L. Ren, Y. Jiao, F. Li, J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10(1), 407–410 (2011).

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sheng, L.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

Shi, H.

Shi, H. Y.

H. Y. Shi, A. X. Zhang, S. Zheng, J. X. Li, and Y. S. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Shi, J. H.

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

Shu, W. X.

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Singh, R.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Sorolla, M.

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sui, S.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Sun, C.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
[Crossref]

Sun, Y. M.

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Tahir, F. A.

M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
[Crossref]

Tang, H. J.

X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013).
[Crossref]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Wang, G. M.

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Wang, J.

Wang, J. F.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Wang, S. M.

Wang, S. Y.

S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
[Crossref] [PubMed]

P. Xu, S. Y. Wang, and W. Geyi, “A linear polarization converter with near unity efficiency in microwave regime,” J. Appl. Phys. 121(14), 144502 (2017).
[Crossref]

Wen, S.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Wen, S. C.

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Wentz, F. J.

T. Meissner and F. J. Wentz, “Polarization rotation and the third stokes parameter: the effects of spacecraft attitude and faraday rotation,” IEEE Trans. Geosci. Remote Sens. 44(3), 506–515 (2006).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Wu, K.

X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013).
[Crossref]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Xia, S.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Xie, H.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Xie, J.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Xie, J. L.

L. B. Zhang, P. H. Zhou, H. P. Lu, H. Y. Chen, J. L. Xie, and L. J. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Xiong, Y.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
[Crossref]

Xu, H. X.

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Xu, J.

Xu, L. M.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Xu, P.

P. Xu, S. Y. Wang, and W. Geyi, “A linear polarization converter with near unity efficiency in microwave regime,” J. Appl. Phys. 121(14), 144502 (2017).
[Crossref]

Xu, Z.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
[Crossref] [PubMed]

H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Yan, M. B.

H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Yang, D.

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Yang, G. Q.

X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013).
[Crossref]

Yang, H. H.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Yang, H. L.

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Ye, Y. Q.

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Yi, X. N.

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, A.

Zhang, A. X.

H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

H. Y. Shi, A. X. Zhang, S. Zheng, J. X. Li, and Y. S. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Zhang, C.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Zhang, D.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, L.

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, L. B.

L. B. Zhang, P. H. Zhou, H. P. Lu, H. Y. Chen, J. L. Xie, and L. J. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Zhang, W.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Zhang, W. B.

Y. T. Jia, Y. Liu, W. B. Zhang, and S. X. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Zhang, X.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
[Crossref]

Zhang, X. K.

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Zhang, Z.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Zhao, G.

L. Ren, Y. Jiao, F. Li, J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10(1), 407–410 (2011).

Zhao, J.

L. Ren, Y. Jiao, F. Li, J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10(1), 407–410 (2011).

Zhao, J. C.

J. C. Zhao and Y. Z. Cheng, “Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region,” Optik (Stuttg.) 136, 52–57 (2017).
[Crossref]

J. C. Zhao and Y. Z. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

Zhao, Y.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Zhao, Y. D.

Z. L. Mei, X. M. Ma, C. Lu, and Y. D. Zhao, “High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface,” AIP Adv. 7(12), 125323 (2017).
[Crossref]

Zheludev, N. I.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Zheng, S.

H. Y. Shi, A. X. Zhang, S. Zheng, J. X. Li, and Y. S. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Zheng, Y. J.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhou, L. J.

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

Zhou, P.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Zhou, P. H.

L. B. Zhang, P. H. Zhou, H. P. Lu, H. Y. Chen, J. L. Xie, and L. J. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Zhou, X.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Zhou, X. X.

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Zhu, S. N.

Zhu, X. C.

X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013).
[Crossref]

Adv. Mater. (1)

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

H. X. Xu, L. Zhang, Y. J. Kim, G. M. Wang, X. K. Zhang, Y. M. Sun, X. H. Ling, H. W. Liu, Z. N. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

AIP Adv. (1)

Z. L. Mei, X. M. Ma, C. Lu, and Y. D. Zhao, “High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface,” AIP Adv. 7(12), 125323 (2017).
[Crossref]

Appl. Phys. B (1)

J. C. Zhao and Y. Z. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

Appl. Phys. Lett. (6)

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Y. T. Jia, Y. Liu, W. B. Zhang, and S. X. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

J. Y. Chin, M. Z. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

H. Y. Shi, A. X. Zhang, S. Zheng, J. X. Li, and Y. S. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (3)

L. Ren, Y. Jiao, F. Li, J. Zhao, and G. Zhao, “A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed,” IEEE Antennas Wirel. Propag. Lett. 10(1), 407–410 (2011).

X. C. Zhu, W. Hong, K. Wu, H. J. Tang, Z. C. Hao, J. X. Chen, and G. Q. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12(4), 968–971 (2013).
[Crossref]

L. B. Zhang, P. H. Zhou, H. P. Lu, H. Y. Chen, J. L. Xie, and L. J. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband Polarization Rotation Reflective Surfaces and Their Applications to RCS Reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

T. Meissner and F. J. Wentz, “Polarization rotation and the third stokes parameter: the effects of spacecraft attitude and faraday rotation,” IEEE Trans. Geosci. Remote Sens. 44(3), 506–515 (2006).
[Crossref]

J. Appl. Phys. (5)

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[Crossref]

H. Y. Chen, J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

M. I. Khan, Q. Fraz, and F. A. Tahir, “Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle,” J. Appl. Phys. 121(4), 045103 (2017).
[Crossref]

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

P. Xu, S. Y. Wang, and W. Geyi, “A linear polarization converter with near unity efficiency in microwave regime,” J. Appl. Phys. 121(14), 144502 (2017).
[Crossref]

Light Sci. Appl. (1)

X. H. Ling, X. X. Zhou, X. N. Yi, W. X. Shu, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen, and D. Y. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

New J. Phys. (1)

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7(1), 255 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optik (Stuttg.) (1)

J. C. Zhao and Y. Z. Cheng, “Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region,” Optik (Stuttg.) 136, 52–57 (2017).
[Crossref]

Phys. Rev. B (2)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Sci. Rep. (4)

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

S. J. Li, X. Y. Cao, L. M. Xu, L. J. Zhou, H. H. Yang, J. F. Han, Z. Zhang, D. Zhang, X. Liu, C. Zhang, Y. J. Zheng, and Y. Zhao, “Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm,” Sci. Rep. 6(1), 37409 (2016).
[Crossref] [PubMed]

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
[Crossref] [PubMed]

Science (3)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Scheme of the proposed polarization converter under the illumination of a linearly polarized wave. (b) Photograph of the fabricated sample. The inset shows a unit cell of the design. (c) Schematic demonstration of the measurement setup.
Fig. 2
Fig. 2 The simulated and experimental results of the proposed polarization converter. (a) Cross-polarized (rxy) and co-polarized (ryy) amplitude reflection spectra. (b) Polarization conversion rate (PCR) spectra.
Fig. 3
Fig. 3 (a) The working principle of the polarization converter. (b) The reflected amplitudes and phase difference, when the electric field of incident waves along u-axis and v-axis, respectively.
Fig. 4
Fig. 4 Distributions of the surface current on the metallic parts of the metasurface unit cell and metallic ground sheet at four resonant frequencies: (a) 7.10 GHz, (b) 9.10 GHz, (c) 14.08 GHz, and (d) 18.92 GHz.
Fig. 5
Fig. 5 Reflection map for (a) co-polarization (ryy) and (b) cross-polarization (rxy) as a function of the frequency and the angle of incidence. (c) Polar plot of simulated values of mean PCR in the frequency range from 7 to 19.5 GHz.

Tables (1)

Tables Icon

Table 1 Comparison with other wideband polarization converters

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved