Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multi-layer silicon nitride-on-silicon polarization-independent grating couplers

Open Access Open Access

Abstract

A polarization-independent grating coupler is proposed and demonstrated in a 3-layer silicon nitride-on-silicon photonic platform. Polarization independent coupling was made possible by the supermodes and added degrees of geometric freedom unique to the 3-layer photonic platform. The grating was designed via optimization algorithms, and the simulated peak coupling efficiency was −2.1 dB with a 1 dB polarization dependent loss (PDL) bandwidth of 69 nm. The fabricated grating couplers had a peak coupling efficiency of −4.8 dB with 1 dB PDL bandwidth of over 100 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Grating couplers (GCs) have emerged as effective optical input/output interfaces between standard optical fibers and silicon (Si) photonic circuits [1–4]. In conventional silicon (Si) photonic platforms, GCs are formed with the single Si waveguide layer using partially or fully etched features. One dimensional (1D) Si GCs are highly polarization sensitive, which can be intuitively explained using the grating equation. For a GC to couple optical power from a waveguide mode propagating in the chip to an emission angle, θ, away from the normal of the plane of the chip, it must satisfy the phase-matching condition,

k0n¯eff,m=k0ncsinθ+q2πΛ,
where k0 is the free-space wavevector of the light, n¯eff,m is the effective index of mode m in the GC, nc is the cladding refractive index of the GC, Λ is the grating period, and q is an integer indexing the diffraction order. In a typical periodic 1D GC formed in a single waveguide layer, n¯eff,m depends on the grating duty cycle, f. It is usually not possible to choose a duty cycle such that Eq. 1 is simultaneously satisfied for both transverse electric (TE) and transverse magnetic (TM) polarized modes, i.e., generally, n¯eff,TE(f)n¯eff,TM(f), leading to polarization-dependent characteristics.

Therefore, to realize a single layer polarization-independent GC (PI-GC), more degrees of freedom, beyond f, is needed such that TE and TM modes can satisfy the same condition in the right hand side in Eq. 1. This can be achieved through 2D patterns [5, 6], an intersection of 1D TE and TM gratings [7], or full freedom in the grating geometry [8]. However, thus far, such PI-GCs have exhibited limited coupling efficiency and bandwidths. Proposals require back-reflectors [5] or subwavelength features [5,7,8]. Defining the polarization dependent loss (PDL) bandwidth Δλ1dB PDL as the bandwidth where PDL is under 1 dB, and ηPI to be the maximum coupling efficiency in either polarization within the PDL bandwidth, to date, the best experimental demonstration of a PI-GC has a Δλ1dB PDL of 12 nm with ηPI of −6 dB.

Here, we present 1D PI-GCs for the O-band in the 3-layer silicon nitride (SiN)-SiN-on-silicon (Si) platform reported in [9] and [10]. The three layers supported 5 confined supermodes which allowed polarization independent coupling to be realizable using available degrees of freedom. The PI-GCs were designed by a combination of heuristics and optimization algorithms, achieving in simulation ηPI = −2.1 dB at 1310 nm with Δλ1dB PDL = 69 nm. The best fabricated device had ηPI = −4.8 dB at 1306 nm Δλ1dB PDL of >100 nm. To the best of our knowledge, this is the highest ηPI with largest Δλ1dB PDL amongst experimentally realized PI-GCs to date. This result complements the ongoing work on broadband and high peak coupling efficiency bi-layer GCs [11–15] and demonstrates the versatility of multi-layer GCs.

This work is organized as follows. In Section 2, we elaborate on the feasibility of polarization independence in the 3-layer stack, and the optimization process. Section 3 provides experimental measurements of the fabricated devices. Section 4 compares the results with a representative selection of polarization independent and polarization splitting gratings from literature, after which we summarize and conclude.

2. Design

2.1. Polarization independent coupling in a 3-layer GC

Figure 1(a) shows the waveguide layers of the 3-layer platform. To intuitively illustrate why a 1D PI-GC can potentially be designed, we examine the modes supported by slab waveguides in this platform. The purpose is to identify whether sufficient degrees of freedom exist to tailor n¯eff for the relevant grating modes such that the modes simultaneously satisfy Eq. 1. Full numerical simulations need to be carried out for the PI-GC design to account for substrate reflections and the strong index perturbation (i.e., the guided modes alone do not fully predict the GC performance). The cross-section consisting of the thin Si etch slab and the two fully etched SiN layers, each individually single-mode for TE and TM polarizations, supports a total of 6 supermodes (modes of a system of multiple coupled optical waveguides), as illustrated in Fig. 1(b). To directly couple light from the multi-layer grating into a single layer waveguide, we consider how the supermodes are excited by an input mode from a SiN1 slab waveguide. While a TE input mode couples into the 3 TE supermodes in the 3-layer region [Fig. 2(a) and Fig. 2(c)], a TM input mode couples into only 2 TM supermodes [Fig. 2(b) and Fig. 2(d)]. This is because Mode 6 is not well confined and has very poor overlap with a TM input mode. Therefore, in total, there are 5 modes relevant for polarization independent coupling into an SiN1 slab waveguide.

 figure: Fig. 1

Fig. 1 (a) Cross-section of the 3-layer SiN-on-Si platform in this work. Vertical dimension is to scale. Layer dimensions and refractive index at nominal center wavelength 1310 nm are indicated. (b) Profiles of the electric (red) and magnetic (blue) fields perpendicular to the plane of the modes supported by the SiN2, SiN1, and Si etch slab layers. The neff of the supermodes are annotated.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 (a)-(b): Power profile in the 3-layer region excited from a SiN1 slab waveguide. Outline of the waveguides are shown in white. Fundamental TE [(a)] and TM [(b)] modes of the SiN1 waveguide excite supermodes of the 3-layer region. No power resides in the Si etch layer for the TM polarization. (c)-(d): Fraction of power coupled to each supermode corresponding to fundamental TE [(c)] and TM [(d)] excitation.

Download Full Size | PPT Slide | PDF

The 5 relevant modes are matched by 5 degrees of freedom in the geometry of a periodic 3-layer GC that can be used to adjust n¯eff,m:1. Fill factor in Si (f0), 2. Fill factor in SiN1 (f1), 3. Fill factor in SiN2 (f2), 4. Spatial offset between the Si and SiN1 features (o0), and 5. Spatial offset between the SiN1 and SiN2 features (o2). These 5 degrees of freedom allow for the possibility for n¯eff,m to be adjusted such that it is equal for all 5 confined supermodes, thus the potential for polarization insensitive operation.

2.2. Optimization assisted design

While satisfying the system of grating equations is a prerequisite for PI-GCs, their good performance (e.g., in terms of ηPI and Δλ1dB PDL) is not guaranteed. Therefore, in addition to these 5 degrees of freedom that adjust n¯eff,m, we include the period Λ of the grating, and the fiber position xs and polish angle θ in the design process to maximize ηPI and Δλ1dB PDL. This results in 8 degrees of freedom for the design of a periodic 3-layer grating. We give a parameterization in Fig. 3, where we have defined the variables w1 = f1Λ, g = (1 − f1 Λ, w0 = f0Λ, w2 = f2Λ for convenience of specifying minimum feature sizes. Apodizing the grating) for this parameterization will result in 2 + 6N variables for apodization of N teeth.

 figure: Fig. 3

Fig. 3 Diagram of the 3-layer PI-GC simulation setup and design parameters.

Download Full Size | PPT Slide | PDF

To develop a design, we used a combination of optimization algorithms and heuristics to optimize figures of merits (FOM) extracted from direct 2D Finite-Difference Time-Domain (FDTD) simulations of the design. These 2D-FDTD simulations were set up based on the parameterization in Fig. 3. The GCs are designed to couple light from an angled polished SMF-28 fiber into a SiN1 waveguide. g, w1, w0, w2 are set between minimum allowable features sizes (0.4 µm for g, 0.3 µm for w1 and w2, and 0.18 µm for w0) up to coarse features of around 1.3 µm corresponding to an upper limit of roughly wavelength per period, beyond which the resultant grating period would not be efficient for the target wavelength. The offsets o0 and o2 are allowed to vary approximately over an entire period, within (−2, 0) μm. Due to substrate reflections and mode matching, the optimal θ cannot be known a priori. Therefore, the design procedure also searched over coupling angles in the range of θ ∈ (0°, 35°) without being limited by the total internal reflection for the cladding-air interface (43.7°). The distance between the SiN1 waveguide and the center of the fiber is xs, which is bounded between 4 and 7 μm. A Gaussian source with mode field diameter (MFD) corresponding to SMF-28 fiber at 1310 nm injects 45° polarized light. The TE and TM transmission spectrum of the GC is taken in the SiN1 waveguide using mode overlap integrals.

We first tried to design a periodic 3-layer GC to achieve good coupling efficiency in TE and TM polarizations simultaneously. We used the average between the TE and TM coupled power at 1310 nm as the FOM for this design as it was fast to calculate using only one 2D-FDTD simulation with diagonally polarized light input into the grating. With this FOM, we ran 100 iterations of the particle swarm algorithm [16], using a population of 100 particles initialized with uniform random sampling. Since this FOM does not account for PDL and Δλ1dB PDL, we visually inspected 20 of the top performing designs to eliminate designs with high PDL or narrow Δλ1dB PDL which occur when the TE and TM polarization spectra cross. From this pool of designs, we identified a design balancing good coupling efficiency and large Δλ1dB PDL with low PDL [see Table 1 and Fig. 4(a)]. Excluding variations of the same design from the same local optimum, the remaining designs that we had inspected had lower efficiency, higher PDL, or lower Δλ1dB PDL.

 figure: Fig. 4

Fig. 4 Spectrum of the (a) uniform PI-GC and (b) apodized PI-GC.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Parameters for the uniform 3-layer SiN-SiN-Si polarization independent GC

We then apodized the periodic GC with the goal of further improving ηPI and decreasing the PDL, while maintaining the wide Δλ1dB PDL of the periodic GC design. We incrementally performed the apodization. Multiple rounds of optimization are performed, where we select several randomly chosen teeth at a time to be varied, with the result from the previous round as a starting point. At each round, we applied the local optimization algorithm COBYLA [17] bounded to a small region around each starting point to make gradual improvements to one of the following FOM: 1. TE coupling efficiency at 1310 nm ηTE, TM coupling efficiency at 1310 nm ηTM, the standard deviation of the PDL computed at 100 wavelengths between 1260 and 1360 nm σspread which is proportional to PDL over the O-band in linear scale, and 4. Δηlog = log10 [ηTM/ηTE] which reduces the difference in the TE and TM coupling efficiencies at the center wavelength in logarithmic scale. At each round, the FOM was selected heuristically by visual inspection based on the result of the previous round, attempting to balance the increase of the ηPI while minimizing the PDL. We first tried to alternate between increasing ηTE and ηTM, but this often led to an increased difference between the TE and TM spectra, or a spectral shift between the two polarizations. Applying the FOMs σspread or Δηlog usually decreased the PDL but sometimes at a slight cost of coupling efficiency. This prompted additional attempts to increase ηTE and ηTM. Through repeated cycling of the FOM and optimization parameters, improvements became less frequent, and we chose to stop at apodized GC with spectrum shown in Fig. 4(b), with xs = 5 µm and θ = 33.9°. Design parameter values are shown in Table 2. Both TE and TM spectra are centered at 1306 nm, with a peak coupling efficiencies of −2.3 dB and −2.1 dB, respectively. The PDL of 0.2 dB at the peak is the lowest value. PDL is below 1 dB between 1329 nm and 1260 nm. Therefore, Δλ1dB PDL = 69 nm and ηPI = −2.1 dB.

Tables Icon

Table 2. Parameters for the apodized 3-layer SiN-SiN-Si polarization independent GC

We show the impact of fabrication variation in fill-factor, interlayer spacer and interlayer offsets in Figs. 5-7 respectively. Fill-factor variations are given in Fig. 5 as deviations from the nominal teeth widths w of Tab. 2 in nm while the fixing the corresponding period. While the TM polarization spectra remains relatively robust against most ±60 nm variations, the TE polarization is prone to shifts in the center wavelength or additional losses. The most significant impact on the performance comes from variations in the SiN1 and SiN2 fill-factors, spacer thicknesses, and SiN2 offset. In these variations, the TE coupling efficiency degrade significantly. In all cases, the TE and TM spectra change in different ways with respect to the variations, which impacts PDL and Δλ1dB PDL.

 figure: Fig. 5

Fig. 5 Sensitivity of the apodized design to fill-factor, given as deviations from the nominal teeth widths w from Tab. 2 while the fixing the corresponding period. Variations are given in nm. (a), (c), (e): Sensitivity of the TE spectra. (b), (d), (f): Sensitivity of the TM spectra.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 Sensitivity of the apodized design to deviations from nominal interlayer spacers. Nominal spacer between Si-SiN1 and between SiN1-SiN2 are both 200 nm. Variations given in the legend are in units of nm. (a),(c): Sensitivity of the TE spectra. (b),(d): Sensitivity of the TM spectra.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7

Fig. 7 Sensitivity of the apodized design to deviations from nominal interlayer offsets. Variations given in the legend are in units of nm. (a),(a): Sensitivity of the TE spectra. (d),(d): Sensitivity of the TM spectra.

Download Full Size | PPT Slide | PDF

3. Experiment

The GCs were fabricated on 200mm wafers with deep UV lithography at IME A*STAR with the back-end-of-line (BEOL) platform described in [10]. The SiN layers are added on top of an active Si platform by plasma-enhanced chemical vapor deposition (PECVD), etching, and chemical mechanical polishing (CMP) steps. The GCs were 12 µm wide, and tapered down to 740 nm waveguides by 500 µm linear tapers. The test structures consisted of pairs of GCs connected by SiN1 waveguides as shown in Fig. 8(a). The devices were measured using a fiber array polished at 34° with index fluid matching fluid (Norland IML150, refractive index n = 1.5) applied at the fiber-chip interface. The input laser polarization was set to TE or TM with a polarization controller (Keysight N7788B) with the polarization calibrated to Si TM GCs that were placed nearby. TM Si GCs were used as they had a higher coupling efficiency and higher PDL than TE Si GC designs at 34°. We used the large contrast between the TE and TM spectra in these TM Si GCs to determine the input polarization by minimizing/maximizing measured power at the center wavelength.

 figure: Fig. 8

Fig. 8 (a) Microscope image of fabricated GC test structure and a magnified image of a GC. (b) Wafer map of devices measured.

Download Full Size | PPT Slide | PDF

The measured spectra for TE, TM, scrambled polarization (SP) inputs, and the PDL from several devices from across the wafer with locations as indicated in Fig. 8(b) are shown in Figure 9. As determined from the free spectral range, the fringes were due to back-reflection of the GCs. From a fringe of at most −0.1 dB near the center wavelength near 1306 nm, we expect at most −22 dB back-reflection. The maximum contrast in the fringe is around −1 dB near 1340 nm, which corresponds to a back-reflection of around −12 dB. Further reduction in back-reflection can be achieved by slanting the grating teeth [18]. Device E4 achieved the best performance, with the TE and TM spectrum overlapping near 1306 nm resulting in a ηPI = −4.8 dB where Δλ1dB PDL was ≥100 nm between <1260 nm and 1360 nm (over the entire O-band).

 figure: Fig. 9

Fig. 9 Measured spectrum of the 3-layer PI-GCs from positions indicated in Fig. 8(b).

Download Full Size | PPT Slide | PDF

The measurements agreed well with simulations qualitatively, but had around −2.5 dB lower coupling efficiency. The study of geometry sensitivity of the device in Sec. 2.2 suggests while fabrication variation could partially be responsible, it is unlikely to be the predominant source of loss as we would also expect worsening of PDL and Δλ1dB PDL. Here, we saw that the polarization independent behavior remains well preserved. Instead, we had observed that SiN2 layer waveguides throughout the wafer experienced losses in excess of 100 dB/cm. The GC teeth uses the SiN2 layer, and an additional loss which affects TE and TM equally is consistent with a lossy SiN2 layer. The physical cause of this fabrication issue is still under investigation, but it can be avoided in future runs as this issue was not present in a separate fabrication run of this 3-layer platform reported in [9], and the subsequent fabrication of a similar passive 3-layer C-band platform [19]. Other contributions to losses include the lack of planarization of the oxide cladding, a slight mismatch in the refractive index between the index matching fluid (n = 1.5) and SiO2, variation or uncertainty in the refractive index, slopes in the sidewalls of the grating features, variation in the layer thicknesses from planarization, and the precise position and angle polish of the optical fiber. Wafer-scale characterization of the material composition and layer thicknesses can be done in the future to ensure better fidelity with simulated results.

4. Discussion

Table 3 compares this present work with a representative selection of PI-GCs and polarization splitting (PS) GCs from literature. This work is the first demonstration of GCs that uses supermodes in a multi-layer platform to effect polarization insensitive operation. Compared to other PI-GCs in a single waveguide layer, our approach does not require post-processing to add a back-reflector to achieve high coupling efficiency (such as comparing between simulation results in [5]), and uses coarser features more amenable to foundry fabrication. To the best of our knowledge, our design is the current best experimental demonstration of a PI grating with respect to PDL bandwidth and insertion losses.

Tables Icon

Table 3. Comparison with a representative selection of polarization independent and polarization splitting GCs.

ηPI is the best coupling efficiency of either polarization within the PDL bandwidth (ΔλPDL) for the PDL given in parentheses. MFS is the minimum feature size of the device.

Abbreviations: Meas. Measured result, Sim. Simulation result, PI Polarization Independent, PS Polarization Splitting, SWL Subwavelength, Shape Opt. Shape Optimization, SOI Silicon on Insulator, BR Back-reflector.

The simulated coupling efficiency and bandwidth of our PI-GC is competitive with PS-GCs. PS-GCs are amenable for polarization diversity and are suited to single layer Si photonic platforms. However, with the introduction of SiN waveguide layers on Si, it is possible to realize components in the SiN layer that exhibit much reduced birefringence such that polarization diversity may not be needed for coarse wavelength division multiplexing (e.g., see [23] for a SiN polarization insensitive wavelength demultiplexer), halving the required footprint.

Although optimization methods have been used to automate the generation of designs, the selection of the designs was largely owed to heuristic evaluations of the device performance. The optimizations used simple FOMs (i.e., single objective each time) and thus required human intervention to guide the procedure toward a final design. Because of the cycling of different FOMs, it is difficult to evaluate the optimality of the solution, although the gradual stalling of improvements suggest the design may be at a local optima of some of the FOMs. Other better performing designs may be possible. For future work, we can adopt a more systematic approach that uses multi-objective optimization or re-define a combined FOM of all the relevant metrics (e.g., ηPI, PDL, Δλ1dB PDL) that is used throughout the optimization. More systematic methods will provide better insight into design trade-offs and optimality in future designs.

5. Conclusion

In summary, we have proposed and demonstrated PI-GCs in a 3-layer SiN-on-Si platform. The polarization insensitivity was made possible by the supermodes and degrees of geometric freedom in the platform. A design was found by successively applying optimizations, each of which targeted a different FOM to optimize for a particular spectral feature. The PI GC achieved ηPI = −4.8 dB at 1306 nm with Δλ1dB PDL of ≥100 nm, the first demonstration of a 3-layer GC and, to the best of our knowledge, the highest measured performance for PI-GCs to date. The work shows the versatility of multi-layer integrated photonic platforms. The results also suggest extensions of multi-layer GCs to spatial division multiplexing, by similarly coupling different input spatial modes to selected layer supermodes. Optimization based design methodologies are particularly necessary to navigate the large number of degrees of freedom in multi-layer photonics.

Funding

Natural Sciences and Engineering Research Council (NSERC); Huawei Technologies Canada.

References

1. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007). [CrossRef]  

2. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014). [CrossRef]   [PubMed]  

3. L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2. [CrossRef]  

4. J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016). [CrossRef]  

5. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011). [CrossRef]   [PubMed]  

6. Z. Cheng and H. K. Tsang, “Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides,” Opt. Lett. 39, 2206–2209 (2014). [CrossRef]   [PubMed]  

7. J. H. Song, F. E. Doany, A. K. Medhin, N. Dupuis, B. G. Lee, and F. R. Libsch, “Polarization-independent nonuniform grating couplers on silicon-on-insulator,” Opt. Lett. 40, 3941–3944 (2015). [CrossRef]   [PubMed]  

8. L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26, 4023–4034 (2018). [CrossRef]   [PubMed]  

9. W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

10. W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018). [CrossRef]  

11. W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014). [CrossRef]   [PubMed]  

12. W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol. 33, 901–910 (2015). [CrossRef]  

13. J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method,” Opt. Express 26, 13656–13665 (2018). [CrossRef]   [PubMed]  

14. M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

15. A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Opt. Express 26, 4766–4779 (2018). [CrossRef]   [PubMed]  

16. Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in “International Conference on Evolutionary Programming,” (Springer, 1998), pp. 591–600.

17. M. J. D. Powell, “A direct search optimization method that models the objective and constraint functions by linear interpolation,” in “Advances in optimization and numerical analysis,” (Springer, 1994), pp. 51–67.

18. D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012). [CrossRef]   [PubMed]  

19. W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017). [CrossRef]   [PubMed]  

20. J. Zou, Y. Yu, and X. Zhang, “Two-dimensional grating coupler with a low polarization dependent loss of 0.25 dB covering the C-band,” Opt. Lett. 41, 4206–4209 (2016). [CrossRef]   [PubMed]  

21. W. Wu, T. Lin, T. Chu, and H. Zhang, “CMOS-Compatible High Efficiency Polarization Splitting Grating Coupler near 1310nm,” in “Asia Communications and Photonics Conference,” (Optical Society of America, 2016), pp. AS2F–4.

22. W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013). [CrossRef]  

23. J. C. Mikkelsen, A. Bois, T. Lordello, D. Mahgerefteh, and J. K. S. Poon, “Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band,” Under preparation (2018).

References

  • View by:

  1. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
    [Crossref]
  2. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
    [Crossref] [PubMed]
  3. L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
    [Crossref]
  4. J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
    [Crossref]
  5. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011).
    [Crossref] [PubMed]
  6. Z. Cheng and H. K. Tsang, “Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides,” Opt. Lett. 39, 2206–2209 (2014).
    [Crossref] [PubMed]
  7. J. H. Song, F. E. Doany, A. K. Medhin, N. Dupuis, B. G. Lee, and F. R. Libsch, “Polarization-independent nonuniform grating couplers on silicon-on-insulator,” Opt. Lett. 40, 3941–3944 (2015).
    [Crossref] [PubMed]
  8. L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26, 4023–4034 (2018).
    [Crossref] [PubMed]
  9. W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.
  10. W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
    [Crossref]
  11. W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
    [Crossref] [PubMed]
  12. W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol. 33, 901–910 (2015).
    [Crossref]
  13. J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method,” Opt. Express 26, 13656–13665 (2018).
    [Crossref] [PubMed]
  14. M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.
  15. A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Opt. Express 26, 4766–4779 (2018).
    [Crossref] [PubMed]
  16. Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in “International Conference on Evolutionary Programming,” (Springer, 1998), pp. 591–600.
  17. M. J. D. Powell, “A direct search optimization method that models the objective and constraint functions by linear interpolation,” in “Advances in optimization and numerical analysis,” (Springer, 1994), pp. 51–67.
  18. D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
    [Crossref] [PubMed]
  19. W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
    [Crossref] [PubMed]
  20. J. Zou, Y. Yu, and X. Zhang, “Two-dimensional grating coupler with a low polarization dependent loss of 0.25 dB covering the C-band,” Opt. Lett. 41, 4206–4209 (2016).
    [Crossref] [PubMed]
  21. W. Wu, T. Lin, T. Chu, and H. Zhang, “CMOS-Compatible High Efficiency Polarization Splitting Grating Coupler near 1310nm,” in “Asia Communications and Photonics Conference,” (Optical Society of America, 2016), pp. AS2F–4.
  22. W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
    [Crossref]
  23. J. C. Mikkelsen, A. Bois, T. Lordello, D. Mahgerefteh, and J. K. S. Poon, “Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band,” Under preparation (2018).

2018 (3)

2017 (1)

2016 (2)

J. Zou, Y. Yu, and X. Zhang, “Two-dimensional grating coupler with a low polarization dependent loss of 0.25 dB covering the C-band,” Opt. Lett. 41, 4206–4209 (2016).
[Crossref] [PubMed]

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

2015 (2)

J. H. Song, F. E. Doany, A. K. Medhin, N. Dupuis, B. G. Lee, and F. R. Libsch, “Polarization-independent nonuniform grating couplers on silicon-on-insulator,” Opt. Lett. 40, 3941–3944 (2015).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol. 33, 901–910 (2015).
[Crossref]

2014 (3)

2013 (1)

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

2012 (1)

2011 (1)

2007 (1)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Atabaki, A.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Ayazi, A.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Baets, R.

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
[Crossref] [PubMed]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Baudot, C.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Bernabé, S.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Bernier, E.

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Berroth, M.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

Boeuf, F.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Bogaerts, W.

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
[Crossref] [PubMed]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Bois, A.

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

J. C. Mikkelsen, A. Bois, T. Lordello, D. Mahgerefteh, and J. K. S. Poon, “Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band,” Under preparation (2018).

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Burghartz, J.

Butschke, J.

Carroll, L.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Chen, X.

Cheng, Z.

Chi, Y.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Chu, T.

W. Wu, T. Lin, T. Chu, and H. Zhang, “CMOS-Compatible High Efficiency Polarization Splitting Grating Coupler near 1310nm,” in “Asia Communications and Photonics Conference,” (Optical Society of America, 2016), pp. AS2F–4.

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

De Koninck, Y.

Ding, L.

Doany, F. E.

Dobbelaere, P. D.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Dumais, P.

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Dupuis, N.

Eberhart, R. C.

Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in “International Conference on Evolutionary Programming,” (Springer, 1998), pp. 591–600.

Gentry, C. M.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Gloeckner, S.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Goodwill, D.

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Hon, K. Y.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Huang, Y.

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol. 33, 901–910 (2015).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

Jayatilleka, H.

Jeong, J.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Jiang, J.

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

Kumar, R.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Kunze, A.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

Lambert, E.

Lee, B. G.

Lee, J. S.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Letzkus, F.

Li, Y.

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

Libsch, F. R.

Lin, T.

W. Wu, T. Lin, T. Chu, and H. Zhang, “CMOS-Compatible High Efficiency Polarization Splitting Grating Coupler near 1310nm,” in “Asia Communications and Photonics Conference,” (Optical Society of America, 2016), pp. AS2F–4.

Lo, G.-Q.

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol. 33, 901–910 (2015).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

Lo, P. G.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

Lo, P. G.-Q.

Lordello, T.

J. C. Mikkelsen, A. Bois, T. Lordello, D. Mahgerefteh, and J. K. S. Poon, “Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band,” Under preparation (2018).

Luo, X.

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

Ma, C.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Mahgerefteh, D.

J. C. Mikkelsen, A. Bois, T. Lordello, D. Mahgerefteh, and J. K. S. Poon, “Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band,” Under preparation (2018).

Mak, J. C. C.

J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method,” Opt. Express 26, 13656–13665 (2018).
[Crossref] [PubMed]

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

Masini, G.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Medhin, A. K.

Mekis, A.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Menezo, S.

J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method,” Opt. Express 26, 13656–13665 (2018).
[Crossref] [PubMed]

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Michaels, A.

Mikkelsen, J. C.

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

J. C. Mikkelsen, A. Bois, T. Lordello, D. Mahgerefteh, and J. K. S. Poon, “Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band,” Under preparation (2018).

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

O’Brien, P.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

O’Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Olivier, S.

Pavanello, F.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Pavarelli, N.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Piggott, A. Y.

Pinguet, T.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Poon, J. K. S.

J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method,” Opt. Express 26, 13656–13665 (2018).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol. 33, 901–910 (2015).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

J. C. Mikkelsen, A. Bois, T. Lordello, D. Mahgerefteh, and J. K. S. Poon, “Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band,” Under preparation (2018).

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Popovic, M. A.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Powell, M. J. D.

M. J. D. Powell, “A direct search optimization method that models the objective and constraint functions by linear interpolation,” in “Advances in optimization and numerical analysis,” (Springer, 1994), pp. 51–67.

Ram, R.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Roelkens, G.

Sacher, W. D.

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol. 33, 901–910 (2015).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Sahni, S.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Sapra, N. V.

Scarcella, C.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Shi, Y.

Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in “International Conference on Evolutionary Programming,” (Springer, 1998), pp. 591–600.

Song, J. H.

Stojanovic, V.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Su, L.

Sun, P.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Taylor, B. J. F.

Temporiti, E.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Trivedi, R.

Tsang, H. K.

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Van Thourhout, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Vercruysse, D.

Vermeulen, D.

Verslegers, L. B.

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

Vogel, W.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

Vuckovic, J.

Wade, M. T.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

Wilmart, Q.

Wu, W.

W. Wu, T. Lin, T. Chu, and H. Zhang, “CMOS-Compatible High Efficiency Polarization Splitting Grating Coupler near 1310nm,” in “Asia Communications and Photonics Conference,” (Optical Society of America, 2016), pp. AS2F–4.

Yablonovitch, E.

Yang, Y.

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

Yong, Z.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

Yu, Y.

Zaoui, W. S.

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

Zhang, H.

W. Wu, T. Lin, T. Chu, and H. Zhang, “CMOS-Compatible High Efficiency Polarization Splitting Grating Coupler near 1310nm,” in “Asia Communications and Photonics Conference,” (Optical Society of America, 2016), pp. AS2F–4.

Zhang, X.

Zou, J.

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabé, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photon. Technol. Lett. 25, 1395–1397 (2013).
[Crossref]

J. Lightw. Technol. (1)

W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightw. Technol. 33, 901–910 (2015).
[Crossref]

Opt. Express (7)

J. C. C. Mak, Q. Wilmart, S. Olivier, S. Menezo, and J. K. S. Poon, “Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method,” Opt. Express 26, 13656–13665 (2018).
[Crossref] [PubMed]

A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Opt. Express 26, 4766–4779 (2018).
[Crossref] [PubMed]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
[Crossref] [PubMed]

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
[Crossref] [PubMed]

L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković, “Fully-automated optimization of grating couplers,” Opt. Express 26, 4023–4034 (2018).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (8)

W. Wu, T. Lin, T. Chu, and H. Zhang, “CMOS-Compatible High Efficiency Polarization Splitting Grating Coupler near 1310nm,” in “Asia Communications and Photonics Conference,” (Optical Society of America, 2016), pp. AS2F–4.

Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in “International Conference on Evolutionary Programming,” (Springer, 1998), pp. 591–600.

M. J. D. Powell, “A direct search optimization method that models the objective and constraint functions by linear interpolation,” in “Advances in optimization and numerical analysis,” (Springer, 1994), pp. 51–67.

M. T. Wade, F. Pavanello, R. Kumar, C. M. Gentry, A. Atabaki, R. Ram, V. Stojanović, and M. A. Popović, “75% efficient wide bandwidth grating couplers in a 45 nm microelectronics CMOS process,” in “Optical Interconnects Conference (OI), 2015 IEEE,” (IEEE, 2015), pp. 46–47.

W. D. Sacher, Z. Yong, J. C. Mikkelsen, A. Bois, Y. Yang, J. C. C. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. JTh4C.3.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Lo, and J. K. S. Poon, “Monolithically integrated multilayer Silicon Nitride-on-Silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE pp. 1–14 (2018).
[Crossref]

L. B. Verslegers, A. Mekis, T. Pinguet, Y. Chi, G. Masini, P. Sun, A. Ayazi, K. Y. Hon, S. Sahni, S. Gloeckner, C. Baudot, F. Boeuf, and P. D. Dobbelaere, “Design of low-loss polarization splitting grating couplers,” in “Advanced Photonics for Communications,” (Optical Society of America, 2014), p. JT4A.2.
[Crossref]

J. C. Mikkelsen, A. Bois, T. Lordello, D. Mahgerefteh, and J. K. S. Poon, “Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band,” Under preparation (2018).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Cross-section of the 3-layer SiN-on-Si platform in this work. Vertical dimension is to scale. Layer dimensions and refractive index at nominal center wavelength 1310 nm are indicated. (b) Profiles of the electric (red) and magnetic (blue) fields perpendicular to the plane of the modes supported by the SiN2, SiN1, and Si etch slab layers. The neff of the supermodes are annotated.
Fig. 2
Fig. 2 (a)-(b): Power profile in the 3-layer region excited from a SiN1 slab waveguide. Outline of the waveguides are shown in white. Fundamental TE [(a)] and TM [(b)] modes of the SiN1 waveguide excite supermodes of the 3-layer region. No power resides in the Si etch layer for the TM polarization. (c)-(d): Fraction of power coupled to each supermode corresponding to fundamental TE [(c)] and TM [(d)] excitation.
Fig. 3
Fig. 3 Diagram of the 3-layer PI-GC simulation setup and design parameters.
Fig. 4
Fig. 4 Spectrum of the (a) uniform PI-GC and (b) apodized PI-GC.
Fig. 5
Fig. 5 Sensitivity of the apodized design to fill-factor, given as deviations from the nominal teeth widths w from Tab. 2 while the fixing the corresponding period. Variations are given in nm. (a), (c), (e): Sensitivity of the TE spectra. (b), (d), (f): Sensitivity of the TM spectra.
Fig. 6
Fig. 6 Sensitivity of the apodized design to deviations from nominal interlayer spacers. Nominal spacer between Si-SiN1 and between SiN1-SiN2 are both 200 nm. Variations given in the legend are in units of nm. (a),(c): Sensitivity of the TE spectra. (b),(d): Sensitivity of the TM spectra.
Fig. 7
Fig. 7 Sensitivity of the apodized design to deviations from nominal interlayer offsets. Variations given in the legend are in units of nm. (a),(a): Sensitivity of the TE spectra. (d),(d): Sensitivity of the TM spectra.
Fig. 8
Fig. 8 (a) Microscope image of fabricated GC test structure and a magnified image of a GC. (b) Wafer map of devices measured.
Fig. 9
Fig. 9 Measured spectrum of the 3-layer PI-GCs from positions indicated in Fig. 8(b).

Tables (3)

Tables Icon

Table 1 Parameters for the uniform 3-layer SiN-SiN-Si polarization independent GC

Tables Icon

Table 2 Parameters for the apodized 3-layer SiN-SiN-Si polarization independent GC

Tables Icon

Table 3 Comparison with a representative selection of polarization independent and polarization splitting GCs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k 0 n ¯ e f f , m = k 0 n c s i n θ + q 2 π Λ ,

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved