Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fano-resonance in one-dimensional topological photonic crystal heterostructure

Open Access Open Access

Abstract

We theoretically realize the Fano resonance with a high quality factor of 106 using a structure, which is constructed from three one-dimensional photonic crystals and a defect layer. The emerged Fano resonance can be attributed to the weak coupling between a Fabry-Perot cavity mode and a topological edge state mode provided by the topological photonic crystal heterostructure. Moreover, we experimentally reproduce this Fano resonance in the optical communication range with a high quality of 104. This may be useful reference for the study of applications of photonic topological states in integrated photonic devices and information processing chips.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photonic topological insulators play an increasingly important role in integrated optics due to their unique properties of topologically-protected edge states, i.e. topological protection and immune to structural disorders [1–3]. Various schemes have been proposed to construct topological photonic modes, including using plasmonic nanoparticles [4, 5], one-dimensional (1D) optical waveguides [6, 7], 1D photonic crystals (PhC) [8], two-dimensional (2D) PhC made of rods [9, 10] and three-dimensional (3D) PhC [11, 12]. However, due to the complicated design and fabrication, the potential applications of topological photonic modes in 2D and 3D topological PhC have been greatly limited, especially in fields of integrated circuits and integrated photonic devices. Recently, Fano resonances have attracted much attention to be applied in many photonic devices [13–16], such as Fano-filters for polarized electrons [17, 18], Fano-transistors [19], demultiplexer [20] and optical switching [21] because of the large transmission change experiencing within a narrow wavelength range. As known, the Fano resonance results from the interference between the discrete bound state and the continuum of states [22]. Illuminated by this mechanism, we build a structure consisting of two parts to generate the Fano resonance response. One is the 1D topological PhC which provides a topological edge mode, and the other is the Fabry-Perot cavity. Using this structure, we theoretically realize a Fano resonance with a high quality factor of 106. Moreover, our experiment reproduces such Fano resonance with a high quality factor reaching 104 in the optical communication range. Our study combines topology with Fano resonance for the first time through the interference coupling of a Fabry-Perot cavity mode and a topological edge mode. So the application of topological photonics could be promoted. This certainly has important implications for the applications of photonic topological states in integrated photonic devices and information processing chips.

2. Calculation

The whole structure consists of two PhC 1 (alternative layers of silicon and silicon dioxide), one PhC 2 (alternative layers of silicon dioxide and silicon), and the defect layer made of silicon dioxide, as shown in Fig. 1(a). The PhC 1 in the left-hand side and PhC 2 construct a heterostructure providing the topological state situated at the heterostructure interface. While the PhC 2, the defect layer and the PhC 1 in the right-hand side construct a Fabry-Perot cavity. The PhC 1 and 2 (shown in Fig. 1(b) and Fig. 1(c), respectively) are composed of four period units and both can support wide forbidden gaps [23, 24].

 figure: Fig. 1

Fig. 1 (a) The whole structure consists of two PhC 1 (alternative layers of silicon and silicon dioxide), one PhC 2 (consisting of alternative layers of silicon dioxide and silicon) and a defect layer made of silicon dioxide. The PhC heterostructure consists of the PhC 1 and the PhC 2. While the Fabry-Perot cavity consist of the PhC 2, the defect layer and the PhC 1. And the Light illuminates from the left to the right direction. (b) Transmitting the light through the PhC 1. (c) Transmitting the light through the PhC 2. (d) The transmission spectra of individual PhC 1 and 2 are indicated by black and red lines, respectively. (e) The band structures of PhC 1 and PhC 2. The red band indicates a bandgap with the positive topological phase, and the blue indicates that with a negative topological phase. We label the Zak phase (0 or π) of each band. The green numbers (1-4) denote the order of the bandgaps.

Download Full Size | PPT Slide | PDF

The transmission spectrum of the PhC heterostructure composed of the PhC 1 and 2 is calculated with a commercial finite element solver package – COMSOL Multiphysics. In our calculation, the effect refractive index neff is set to be 1.46 for silicon dioxide, 2.82 for silicon [25]. In PhC 1, the silicon layer is 680-nm-thick and the silicon dioxide layer is 815-nm-thick. While in PhC 2, the thicknesses are 1290 nm for the silicon dioxide layer, 685 nm for silicon layer and 1045 nm for silicon dioxide defect layer, respectively. It is pointed out that the topological edge modes can exist in the 1D PhC heterostructure interface, when two PhC whose bandgaps are in the same wavelength range have different topological properties [26]. We show the calculated transmission spectra of the PhC 1 and 2 in Fig. 1(d). The forbidden band of PhC 1 situates in the same wavelength range around 1540 nm as that of PhC 2. In addition, we respectively calculate the band diagrams [Fig. 1(e)] of PhC 1 and 2 by the conjugate gradient minimization of a Maxwell operator based on a plane-wave basis [26]. Four photonic bandgaps can be observed for both PhC 1 and PhC 2 within the frequency range from 20 to 220 THz. Here, the red band indicates a bandgap with a positive topological phase, while the blue implies a bandgap with a negative topological phase. The position of the fourth gap of PhC 1 coincides with that of PhC 2, which is located at the operating frequency of 195 THz. Besides, the fourth gaps of PhC 1 and PhC 2 are both broad bandgaps and have different signs of the topological property. This provides a possibility for the existence of a topological edge mode at the heterostructure interface around 195 THz by calculating the sum of the Zak phases below fourth bandgap [27]. In other words, there may emerge a transmission peak in the interface of the PhC heterostructure in the vicinity of the forth bandgaps [28].

As shown in Fig. 2(a), we illuminate the PhC heterostructure from left to right. The calculated electric-field distribution and transmission spectrum of the PhC heterostructure are shown in Fig. 2(b) and Fig. 2(c), respectively. Obviously, the electric fields are confined around the heterostructure interface, indicating the existence of topological edge mode. Besides, a sharp peak with 99.9% transmittance at the wavelength of 1538 nm (corresponding to the frequency of 195 THz) is revealed on the transmission spectrum. Actually, the center frequency of the sharp transmission peak is exactly located at the overlap parts of the fourth gaps in PhC 1 and PhC 2. A zoom-in of the sharp peak together with its fit is shown in Fig. 2(d). The fitting curve has a typical symmetric Lorentzian line shapes. This demonstrates that a Lorentzian resonance has arisen at the heterostructure interface [28], with a center wavelength λ1 of 1538.1 nm and a full width at half maxima ∆λ1 (FWHM) of 2.3 nm.

 figure: Fig. 2

Fig. 2 (a) The PhC heterostructure consisting of the PhC 1 and PhC 2. The topological edge state will appear at the interface of PhC 1 and PhC 2. (b) The calculated electric field of Ez component in 1D PhC heterostructure. (c) The transmission spectrum of the 1D PhC heterostructure. The red arrow indicates the frequency position of the emerged topological edge state. (d) A zoom-in of the transmission peak (black curve) of the photonic topological edge state denoted in (c) together with its fitting curve (red curve).

Download Full Size | PPT Slide | PDF

Now we build a Fabry-Perot cavity. As illustrated in Fig. 3(a), the cavity consists of the PhC 2, the defect layer, and the PhC 1. Likewise, after the light illumination we theoretically obtain the electric-field distribution and the transmission spectrum of the Fabry-Perot cavity. In Fig. 3(b), the calculated electric-field distribution of the Fabry-Perot cavity are obviously confined around the defect layer. And the fitting of the transmission spectrum of Fabry-Perot cavity exhibits a typical symmetric Lorentzian line shapes, as shown in Fig. 3(c). This transmission spectrum has is a center wavelength λ2 of 1534.6 nm and an FWHM ∆λ2 of 1.4 nm. According to the definition of quality factor, i.e. λ/∆λ, we obtain the quality factors, which are 669 for the photonic topological edge mode centered at 1538.1 nm and 1096 for the Fabry-Perot cavity mode centered at 1534.6 nm, respectively. More results about the quality factors can be found in Appendix I.

 figure: Fig. 3

Fig. 3 (a) The Fabry-Perot cavity consisting of the PhC 2, the defect layer and the PhC 1. The Light illuminates from left to right. (b) The calculated electric field of Ez component in the Fabry-Perot cavity. (c) The calculated transmission spectrum (black curve) and the fitting curve (red curve) of the Fabry-Perot cavity.

Download Full Size | PPT Slide | PDF

We combine the PhC heterostructure and Fabry-Perot cavity as a whole structure to study the interaction between the two parts. In Fig. 4(a), we show the calculated electric-field distribution of the whole structure. One can observe the electric field are mainly distributed around the PhC heterostructure interface and defect layer, which can be regarded as a simple superposition of the electric fields in the PhC heterostructure and the Fabry-Perot cavity. The transmission spectrum of the whole structure is calculated, as seen in Fig. 4(b). For comparison, we also display the corresponding spectra of the PhC heterostructure and the Fabry-Perot cavity (depicted by red and blue curves, respectively). Surprisingly, an extremely narrow peak, highlighted by a gray region with the blue edge, can be observed on the transmission curve of the whole structure. For the better visualization, we zoom in this peak in Fig. 4(c) and find it has an asymmetry profile resembling that of Fano resonance [29], i.e.

 figure: Fig. 4

Fig. 4 (a) The whole structure and the calculated electric field of Ez component of it. (b)The transmission curves of the PhC heterostructure (black curve), the Fabry-Perot cavity (blue curve) and the whole structure (red curve, the component of the Fano resonance have been highlighted). (c) A zoom-in of the highlighted transmission peak (black curve) and the fitting curve (red curve) with a Fano profile.

Download Full Size | PPT Slide | PDF

Ι(qγ+cλcλ0)2(cλcλ0)2+γ2.

Here, q is the asymmetry parameter of the Fano resonance and γ is the line width of the Fano resonance. Then we fit the sharp peak with Eq. (1). When q = 5.3 and γ = 2.3 × 107, the fitting curve matches the transmission peak best. This fit demonstrates that the sharp peak appeared in the transmission spectrum happens to be a sharp Fano resonance. The Fano resonance occurs at 1532.345 nm with a high spectral contrast, and its profile evolves from a dip of 0% to a peak of 95.5% transmission within a very narrow wavelength range. The quality factor of the Fano resonance can reach 106. In the limit of |q|, the transmission of the continuum states is very weak, and the line shape is only determined by the transmission of the discrete state [30]. Then a standard Lorentzian profile will emerge. While in our calculation, the asymmetry parameter q is 5.3. This means the transmission of the discrete states are comparable to that of the continuum states. These two kinds of states jointly result in the asymmetric Fano profile. The existence of the Fano lineshape is conformed in Appendix II.

As mentioned above, a topological edge mode arises at the heterostructure interface while the Fabry-Perot cavity generate another mode with the Lorentz profile. An approximate perturbation theory was applied to clarify the appearance of asymmetric resonances and this resonance has been considered as a special state generated by coupling between discrete bound states and continuum states [22]. In Fig. 4(b), the line width of the mode generated by the Fabry-Perot cavity is narrower than that in the PhC heterostructure. Thus we can assume that the Fabry-Perot cavity provides the discrete bound state, while the PhC heterostructure provides the continuum states. If we combine the PhC heterostructure and the Fabry-Perot cavity together as shown in Fig. 4(a), their corresponding modes will couple with each other and the symmetry of the transmission spectrum will be broken. It is the interference of above two states that generate the Fano resonance [22]. Therefore, the transmission spectrum of Fano resonance experiences a huge change within a very narrow wavelength range due to the destructive interference between the two states.

3. Experiments

To verify our simulation, we carried out the experiment as follows. As shown in Fig. 5(a), we fabricated the sample to obtain the Fano resonance experimentally. Firstly, a 100 nm-thick Au film was deposited by the E-beam evaporation. And then the SiO2 and Si layers with the thickness of 300 nm and 220 nm were deposited using the chemical vapor deposition (CVD) on the Au film successively. To acquire the grating structure as mentioned in Fig. 1(a), we used the focused ion beam (FIB) technology to etch the Si layer. The SEM image of the etched grating structure can be seen in Fig. 5(b). Two 150 μm-long grooves etched beside the grating structure were used to confine the light in the Si waveguide with the width of 12 μm. At both ends of this waveguide, the coupling gratings (duty-cycle of 0.58 and a grating constant of 560 nm) were etched to couple the light in and out the waveguide. Figure 5(c) showed a SEM image of the whole structure with a 220 nm etching depth. Finally, another 300 nm-thick SiO2 layer was covered on the whole sample with the CVD, and after that, a 100 nm-thick Au layer was deposited again only on the grating structure using the E-beam evaporation. We have fabricated gold layer on both bottom and top to form the gold mirrors. These metal layers contributed to the confinement of the light within the structure as well as constraining the electric field to be normal to the parallel plates [31]. It can efficiently reduce the radiation loss of the light transmission in the grating, and meanwhile better reproduce the propagation properties of the 1D PhC in simulation [25].

 figure: Fig. 5

Fig. 5 (a) Three-dimensional schematic structure of the sample. (b) SEM image of the grating structure. (c) SEM image of the whole structure. (d) The transmission of the experiment curve.

Download Full Size | PPT Slide | PDF

The light source was a tunable fiber laser (Santec-TSL-510), whose output power was 20mW. One single-mode-fiber was coupled to the left coupling grating while another was coupled out at the right coupling grating. The coupling efficiency of the fiber was more than 90%. The fiber spectrometer (Avantes-AvaSpec-NIR256-1.7) was used to measure the signal intensity. The measuring accuracy of the fiber spectrometer was 0.01 nm and we chose the working wavelength from 1520 nm to 1550 nm to measure it.

As shown in Fig. 5(d), a dramatically narrow peak with high quality factor of 104 could be obtained and the experimental transmission was 69.4% at 1530.11 nm. The difference between the transmission of experiment and calculation was caused by inevitable experiment deviation such as surface roughness, scattering and radiation loses in other dimensions. A further calculation of a similar structure in two-dimensional can be seen in Appendix III. Experiment can verify the theoretical calculation well, which makes integrated photonic devices possible.

4. Conclusion

In this paper, Fano resonance was realized in a 1D topological PhC heterostructure. High quality factors of 106 and 104 were reached theoretically and experimentally for the Fano resonance, respectively. The transmittance experiences a huge change within a very narrow wavelength range around the optical communication band. This characteristic of the Fano resonance has implication for the low-power optical switching. Our study may be useful reference for the study of applications of photonic topological states in integrated photonic devices and information processing chips.

Appendix 1 Quality factor

To find out the change regulation of the quality factor Q in the 1D PC heterostructure and the Fabry-Perot cavity, we carry out the following calculation. According to the definition of quality factor, i.e. λ/∆λ, we obtain the quality factors, which are 669 for the photonic topological edge mode centered at 1538.1 nm and 1096 for the 1D defect PC centered at 1534.6 nm, respectively. This difference could also be confirmed from the electric-field distribution shown in Fig. 2(b) and Fig. 3(b). As for the second comment, we calculate the transmission spectrum of the 1D defect PC with different distances d0 between the PhC 2 and PhC 1, as shown in the following Fig. 6, together with its quality factor. When d0=900nm, 960nm, 1020nm, 1080nm, 1140nm and 1200nm, correspondingly Q=423, 715,897, 1033, 749, 408. According to these results, we may conclude that 1D defect PC has higher Q when it locates in the center of the forbidden band, while it has lower Q when locating in the band edges of the forbidden band. Therefore, it is not a universally applicable conclusion that the topological PCs always have higher Q.

 figure: Fig. 6

Fig. 6 The calculated transmission spectra of the Fabry-Perot cavity with different distances d0 between the PhC 2 and PhC 1. When d0 = 900nm, 960nm, 1020nm, 1080nm, 1140nm, 1200nm, the corresponding quality factor equals 423, 715,897, 1033, 749,408.

Download Full Size | PPT Slide | PDF

Appendix 2 Confirmation of the existence of Fano linetype

To make sure that the Fano linetype will persist to exist under different conditions, we have calculated the transmission spectrum of the whole structure with different distances d0 of the defect layer. As shown in Fig. 7, although the calculated transmittance and central wavelength are changing with respect to d0, the Fano linetype still exists. This demonstrates that Fano profile can persist to exist under various conditions.

 figure: Fig. 7

Fig. 7 The calculated transmission spectra of the whole structure with different distances d0 between the PhC 2 and PhC 1.

Download Full Size | PPT Slide | PDF

Appendix 3 2D Calculation with FDTD

In order to better explain the experiment, we try to change our model from pure one-dimensional simulation to two-dimensional which closely resembles the experiment geometry. Here we propose that the dielectric gratings could replace 1D PhC in a similar way. The 1D PhC band structure derives from Bragg scattering of photons in periodic layers, which is the same phenomena occurring for the case of light propagating in gratings. Our 2D geometry [shown in Fig. 8(a)] is just like the cross-section of our experiment sample in Fig. 5(a). First consider a 220-nm dielectric gratings clad with 300-nm silicon dioxide layers top and bottom, with two 100 nm-thick metallic cladding layers over the silicon dioxide layers. The grating structure consists of silicon and silicon dioxide.

 figure: Fig. 8

Fig. 8 (a) The calculated electric field of Ez component in 2D geometry. (b) The transmission spectrum of the 2D geometry calculated by the finite-difference time domain simulation (FDTD).

Download Full Size | PPT Slide | PDF

Then we carry out the finite-difference time domain simulation (FDTD) with the geometry. As shown in Fig. 8(a), the electric field of Ez component of the 2D geometry is not only distributed around the PhC heterostructure interface and defect layer, but also distributed at the center of the 2D geometry. This distribution may be caused by the difference between the 1D PhC and the 2D dielectric gratings. Besides, we calculate the transmission spectrum of the 2D geometry with the finite-difference time domain simulation (FDTD), as shown in Fig. 8(b). We find this spectrum is different from the transmission spectrum of the 1D PhC heterostructure [shown in Fig. 4(c)], which is calculated by commercial finite element solver package-COMSOL Multiphysics. Both the transmittance and the quality factor (Q≈4×104) calculated by FDTD reduce because of the radiation losses in the 2nd dimension.

Funding

973 Program of China Grants 2013CB328704 and 2014CB921003; National Natural Science Foundation of China (NSFC) Grants 61475003, 61775003, 11734001, 11527901; National Postdoctoral Program for Innovative Talents Grant BX201700011.

References and links

1. A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014). [CrossRef]   [PubMed]  

2. M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013). [CrossRef]   [PubMed]  

3. L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014). [CrossRef]  

4. C. W. Ling, M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, “Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles,” Opt. Express 23(3), 2021–2031 (2015). [CrossRef]   [PubMed]  

5. A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014). [CrossRef]  

6. S. Longhi, “Zak phase of photons in optical waveguide lattices,” Opt. Lett. 38(19), 3716–3719 (2013). [CrossRef]   [PubMed]  

7. M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013). [CrossRef]   [PubMed]  

8. L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015). [CrossRef]   [PubMed]  

9. J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015). [CrossRef]   [PubMed]  

10. T. Ochiai, “Broken Symmetry and Topology in Photonic Analog of Graphene,” Int. J. Mod. Phys. B 28(2), 1441004 (2014).

11. L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013). [CrossRef]  

12. L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016). [CrossRef]  

13. G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936). [CrossRef]  

14. R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949). [CrossRef]  

15. U. Fano and A. R. P. Rau, “Atomic Collisions and Spectra” (Orlando, FL: Academic) (1986).

16. F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973). [CrossRef]  

17. L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett. 32(7), 781–783 (2007). [CrossRef]   [PubMed]  

18. J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003). [CrossRef]  

19. J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000). [CrossRef]  

20. Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014). [CrossRef]  

21. Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014). [CrossRef]  

22. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]  

23. A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007). [CrossRef]  

24. M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998). [CrossRef]  

25. C. Li, X. Y. Hu, W. Gao, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 1701071 (2018). [CrossRef]  

26. V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015). [CrossRef]  

27. M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014). [CrossRef]  

28. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals: Molding the flow of light,” Princeton University Press, Princeton (1995).

29. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef]   [PubMed]  

30. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010). [CrossRef]  

31. Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

References

  • View by:

  1. A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
    [Crossref] [PubMed]
  2. M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
    [Crossref] [PubMed]
  3. L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
    [Crossref]
  4. C. W. Ling, M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, “Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles,” Opt. Express 23(3), 2021–2031 (2015).
    [Crossref] [PubMed]
  5. A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
    [Crossref]
  6. S. Longhi, “Zak phase of photons in optical waveguide lattices,” Opt. Lett. 38(19), 3716–3719 (2013).
    [Crossref] [PubMed]
  7. M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
    [Crossref] [PubMed]
  8. L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
    [Crossref] [PubMed]
  9. J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
    [Crossref] [PubMed]
  10. T. Ochiai, “Broken Symmetry and Topology in Photonic Analog of Graphene,” Int. J. Mod. Phys. B 28(2), 1441004 (2014).
  11. L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
    [Crossref]
  12. L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
    [Crossref]
  13. G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936).
    [Crossref]
  14. R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
    [Crossref]
  15. U. Fano and A. R. P. Rau, “Atomic Collisions and Spectra” (Orlando, FL: Academic) (1986).
  16. F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
    [Crossref]
  17. L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett. 32(7), 781–783 (2007).
    [Crossref] [PubMed]
  18. J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
    [Crossref]
  19. J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
    [Crossref]
  20. Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
    [Crossref]
  21. Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
    [Crossref]
  22. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  23. A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
    [Crossref]
  24. M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
    [Crossref]
  25. C. Li, X. Y. Hu, W. Gao, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 1701071 (2018).
    [Crossref]
  26. V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
    [Crossref]
  27. M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
    [Crossref]
  28. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals: Molding the flow of light,” Princeton University Press, Princeton (1995).
  29. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  30. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  31. Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

2016 (1)

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

2015 (5)

C. W. Ling, M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, “Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles,” Opt. Express 23(3), 2021–2031 (2015).
[Crossref] [PubMed]

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
[Crossref]

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

2014 (7)

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

T. Ochiai, “Broken Symmetry and Topology in Photonic Analog of Graphene,” Int. J. Mod. Phys. B 28(2), 1441004 (2014).

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

2013 (4)

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

S. Longhi, “Zak phase of photons in optical waveguide lattices,” Opt. Lett. 38(19), 3716–3719 (2013).
[Crossref] [PubMed]

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

2010 (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

2007 (2)

A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
[Crossref]

L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett. 32(7), 781–783 (2007).
[Crossref] [PubMed]

2003 (1)

J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
[Crossref]

2000 (1)

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

1998 (1)

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

1973 (1)

F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
[Crossref]

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

1949 (1)

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
[Crossref]

1936 (1)

G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936).
[Crossref]

Abe, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

Adair, R. K.

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
[Crossref]

Arai, K.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

Atala, M.

V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
[Crossref]

Bird, J. P.

J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
[Crossref]

Bockelman, C. K.

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
[Crossref]

Breit, G.

G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936).
[Crossref]

Cardona, M.

F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
[Crossref]

Cerdeira, F.

F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
[Crossref]

Chan, C. T.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

C. W. Ling, M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, “Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles,” Opt. Express 23(3), 2021–2031 (2015).
[Crossref] [PubMed]

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Chang, M. L.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Chen, W. J.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Chen, Y.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Chen, Z.

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cui, L. N.

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Dal Lago, V.

V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
[Crossref]

Dong, J. W.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Fang, C.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fjeldly, T. A.

F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Foa Torres, L. E. F.

V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
[Crossref]

Fu, L.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

Fujii, T.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

Fung, K. H.

Ge, L.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Goldhaber-Gordon, D.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Göres, J.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Guinea, F.

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Han, D.

Hang, Z. H.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Heemeyer, S.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Heuck, M.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Hu, H.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Hu, R.

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Huang, X. Q.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Huang, Z. Y.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Inoue, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

Ivchenko, E. L.

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

Joannopoulos, J. D.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

Johnson, S. G.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

Kastner, M. A.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Kita, S.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Kivshar, Y.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Kraus, Y. E.

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

Lahini, Y.

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

Lewenstein, M.

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Li, Y.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Ling, C. W.

Loncar, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Longhi, S.

Lu, L.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mahalu, D.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Manoharan, H. C.

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Mazur, E.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Meirav, U.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Miroshnichenko, A.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Mørk, J.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Muñoz, P.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ochiai, T.

T. Ochiai, “Broken Symmetry and Topology in Photonic Analog of Graphene,” Int. J. Mod. Phys. B 28(2), 1441004 (2014).

Ochiai, Y.

J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
[Crossref]

Oxenløwe, L. K.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Pellegrini, V.

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Peterson, R. E.

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
[Crossref]

Peucheret, C.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Pilozzi, L.

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

Poddubny, A. N.

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

Polini, M.

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Poon, A. W.

Poshakinskiy, A. V.

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

Reshef, O.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Rostami, A.

A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
[Crossref]

Shtrikman, H.

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

Silberberg, Y.

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

Slobozhanyuk, A.

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

Soljacic, M.

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

Song, J. F.

J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
[Crossref]

Verbin, M.

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

Vulis, D. I.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Wang, L.

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Wen, W.

Wigner, E.

G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936).
[Crossref]

Xiao, J.

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Xiao, M.

Xue, W. Q.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Yin, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Yu, L.

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Yu, S. F.

Yu, Y.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Yvind, K.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Zhang, Z. Q.

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhong, Z. C.

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

Zhou, L.

Zilberberg, O.

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, “Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles,” ACS Photonics 1(2), 101–105 (2014).
[Crossref]

Appl. Phys. Lett. (2)

J. F. Song, Y. Ochiai, and J. P. Bird, “Fano resonances in open quantum dots and their application as spin filters,” Appl. Phys. Lett. 82(25), 4561–4563 (2003).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Int. J. Mod. Phys. B (1)

T. Ochiai, “Broken Symmetry and Topology in Photonic Analog of Graphene,” Int. J. Mod. Phys. B 28(2), 1441004 (2014).

J. Appl. Phys. (1)

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998).
[Crossref]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol. 8(9), 625–633 (2013).
[Crossref] [PubMed]

Nat. Photonics (3)

L. Lu, J. D. Joannopoulos, and M. Soljacic, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljacic, “Weyl points and line nodes in gyroid photonic crystals,” Nat. Photonics 7(4), 294–299 (2013).
[Crossref]

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On chip zero-index metamaterials,” Nat. Photonics 9, 738–742 (2015).

Nat. Phys. (1)

L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Symmetry-protected topological photonic crystal in three dimensions,” Nat. Phys. 12(4), 337–340 (2016).
[Crossref]

Opt. Commun. (1)

Z. Chen, R. Hu, L. N. Cui, L. Yu, L. Wang, and J. Xiao, “Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems,” Opt. Commun. 320, 6–11 (2014).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
[Crossref]

Opt. Lett. (2)

Phys. Rev. (3)

G. Breit and E. Wigner, “Capture of Slow Neutrons,” Phys. Rev. 49(7), 519–531 (1936).
[Crossref]

R. K. Adair, C. K. Bockelman, and R. E. Peterson, “Experimental Corroboration of the Theory of Neutron Resonance Scattering,” Phys. Rev. 76(2), 308 (1949).
[Crossref]

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. A (1)

V. Dal Lago, M. Atala, and L. E. F. Foa Torres, “Floquet topological transitions in a driven one-dimensional topological insulator,” Phys. Rev. A 92(2), 023624 (2015).
[Crossref]

Phys. Rev. B (2)

J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62(3), 2188–2194 (2000).
[Crossref]

F. Cerdeira, T. A. Fjeldly, and M. Cardona, “Effect of Free Carriers on Zone-Center Vibrational Modes in Heavily Doped p-type Si. II. Optical Modes,” Phys. Rev. B 8(10), 4734–4745 (1973).
[Crossref]

Phys. Rev. Lett. (3)

A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[Crossref] [PubMed]

J. W. Dong, M. L. Chang, X. Q. Huang, Z. H. Hang, Z. C. Zhong, W. J. Chen, Z. Y. Huang, and C. T. Chan, “Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals,” Phys. Rev. Lett. 114(16), 163901 (2015).
[Crossref] [PubMed]

M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of Topological Phase Transitions in Photonic Quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Xiao, Z. Q. Zhang, and C. T. Chan, “Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems,” Phys. Rev. X 4(2), 021017 (2014).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Other (3)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals: Molding the flow of light,” Princeton University Press, Princeton (1995).

C. Li, X. Y. Hu, W. Gao, “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 1701071 (2018).
[Crossref]

U. Fano and A. R. P. Rau, “Atomic Collisions and Spectra” (Orlando, FL: Academic) (1986).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The whole structure consists of two PhC 1 (alternative layers of silicon and silicon dioxide), one PhC 2 (consisting of alternative layers of silicon dioxide and silicon) and a defect layer made of silicon dioxide. The PhC heterostructure consists of the PhC 1 and the PhC 2. While the Fabry-Perot cavity consist of the PhC 2, the defect layer and the PhC 1. And the Light illuminates from the left to the right direction. (b) Transmitting the light through the PhC 1. (c) Transmitting the light through the PhC 2. (d) The transmission spectra of individual PhC 1 and 2 are indicated by black and red lines, respectively. (e) The band structures of PhC 1 and PhC 2. The red band indicates a bandgap with the positive topological phase, and the blue indicates that with a negative topological phase. We label the Zak phase (0 or π) of each band. The green numbers (1-4) denote the order of the bandgaps.
Fig. 2
Fig. 2 (a) The PhC heterostructure consisting of the PhC 1 and PhC 2. The topological edge state will appear at the interface of PhC 1 and PhC 2. (b) The calculated electric field of Ez component in 1D PhC heterostructure. (c) The transmission spectrum of the 1D PhC heterostructure. The red arrow indicates the frequency position of the emerged topological edge state. (d) A zoom-in of the transmission peak (black curve) of the photonic topological edge state denoted in (c) together with its fitting curve (red curve).
Fig. 3
Fig. 3 (a) The Fabry-Perot cavity consisting of the PhC 2, the defect layer and the PhC 1. The Light illuminates from left to right. (b) The calculated electric field of Ez component in the Fabry-Perot cavity. (c) The calculated transmission spectrum (black curve) and the fitting curve (red curve) of the Fabry-Perot cavity.
Fig. 4
Fig. 4 (a) The whole structure and the calculated electric field of Ez component of it. (b)The transmission curves of the PhC heterostructure (black curve), the Fabry-Perot cavity (blue curve) and the whole structure (red curve, the component of the Fano resonance have been highlighted). (c) A zoom-in of the highlighted transmission peak (black curve) and the fitting curve (red curve) with a Fano profile.
Fig. 5
Fig. 5 (a) Three-dimensional schematic structure of the sample. (b) SEM image of the grating structure. (c) SEM image of the whole structure. (d) The transmission of the experiment curve.
Fig. 6
Fig. 6 The calculated transmission spectra of the Fabry-Perot cavity with different distances d0 between the PhC 2 and PhC 1. When d0 = 900nm, 960nm, 1020nm, 1080nm, 1140nm, 1200nm, the corresponding quality factor equals 423, 715,897, 1033, 749,408.
Fig. 7
Fig. 7 The calculated transmission spectra of the whole structure with different distances d0 between the PhC 2 and PhC 1.
Fig. 8
Fig. 8 (a) The calculated electric field of Ez component in 2D geometry. (b) The transmission spectrum of the 2D geometry calculated by the finite-difference time domain simulation (FDTD).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ι ( q γ + c λ c λ 0 ) 2 ( c λ c λ 0 ) 2 + γ 2 .

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved