Abstract

A D-shape plastic optical fiber (D-POF) surface plasmon resonance (SPR) biosensor based on the graphene/Au film (G/Au) was proposed and experimentally demonstrated for detection of DNA hybridization process. To improve the detection performance of SPR sensors, the Physical Vapor Deposition (PVD) method was used to evaporate the Au film directly onto the graphene grown on copper foil, and the Au film acted as a role of traditional Polymethyl Methacrylate (PMMA). The process made graphene and Au film form seamless contact. Next, the G/Au was transferred onto the D-shape fiber together. We explored the G/Au SPR sensor by using the finite element method (FEM) and obtained the optimum materials thickness to form configuration. Compared to other plastic optical fiber experiments, the proposed sensor’s sensitivity was improved effectively and calculated as 1227 nm/RIU in a range of glucose solution. Meanwhile, our proposed sensor successfully distinguishes hybridization and single nucleotide polymorphisms (SNP) by observing the resonance wavelength change. It also exhibits a satisfactory linear response (R2 = 0.996) to the target DNA liquids with respective concentrations of 0.1nM to1µM, which shows this method’s wide potential in medical diagnostics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

DNA hybridization is a biochemical process that identifies DNA nucleotide binding in the correct orientation, which has an important role in medical diagnostics [1]. To date, a variety of methods including optical [2–4] and electrochemical methods [5,6] have been studied for the detection of DNA hybridization. Compared with electrochemical methods, optical biosensors offer several advantages such as small size, long distance sensing, electromagnetic immunity etc. Among the optical methods, SPR is the standard tool for the detection of DNA binding [7]. SPR is commonly referred as a quantum of charge density oscillations at the metal-dielectric intersections excited by transverse magnetic (TM) polarized electromagnetic waves. When the wave vector of the incident light matches the wave vector of the SPs (surface plasmons), a photon-electron coupling resonance excitation will occur. In this way, the shift of the resonance position can be used to detect small changes in the refractive index [8]. Based on this phenomenon, two main kinds of SPR sensors have been developed, namely, the prism SPR and the optical fiber SPR [9]. Among them, optical fiber SPR has brought tremendous advancements such as simplicity, cost effectiveness, and miniaturization easy handling. Therefore, this technique has been capturing increasingly research interest, since it was proposed by R.C. Jorgensonin 1993 [10].

Up to now, many efforts have been made to enhance the performance of optical fiber SPR sensors. Various optical fiber structures have been proposed, such as partially unclad optical fibers [11], tapered optical fibers [12], D-shaped optical fiber [13], U-bent optical fiber [14,15], and so on. Considering that the cylindrical geometry of optical fiber is not suitable for the transfer of large-area mono-layer graphene film. Meantime, during the detection, the film is not easy to be stabilized on the cylindrical fiber, thereby the film may be broken or peeled off. So we proposed to use a D-shape fiber whose polished facet can better maintain the integrity and prevent the wrinkles of graphene/Au film. In addition, D shaped fiber can easy access to a large evanescent field for efficient sensing application and being easy to fabricate. It can also provide a flat detection plane for the probe during the detection. On the other hand, although these optical fiber SPR sensors possess distinguished optical properties and good DNA sequencing performances [16,17], while most of them are generally made from silica fibers, which remain are fragile and expensive. Recently, plastic optical fiber (POF) has received more attention compared with the conventional silica fibers due to their superiority in machinability, handling and low cost [18].

In addition to the structures and type of the optical fiber, it has also been demonstrated that a superior SPR signal can be obtained by optimizing material on the fiber as a sensitive layer. In recent years, the combination of metals and 2D materials as the typical sensitive layer has gained increased attention [19–22]. As the most representative available 2D material, graphene has a 2D honeycomb lattice of carbon with a sp2 structure and possesses large surface to volume ratio [23–26], which is beneficial to the adsorption of the probe aptamer and will further improve the sensitivity of the biosensor. Recently, graphene has been applied to optical fiber sensing technology to enhance the signal, such as graphene-based long –period fiber grating SPR sensor [27], graphene/Au-enhanced plastic clad silica fiber [28] and graphene oxide @ AuNPs based on a non-coated optical fiber SPR sensor [29]. When graphene layers are deposited on metal layers, strong coupling can be induced at the graphene/metal interface, and further strengthens the electric field of SPP [30–32]. However, Au film is physical contact with graphene, it is easy to delamination at the contact interface. In previous literature, the fiber sensors based on graphene/metal structure were usually fabricated by first deposing a layer of metal film on the fiber and then transferring the graphene using the wet transfer approach. But the unavoidable residual Cu atoms will be trapped within the graphene layer after etching, which will further lead to the imperfect contact between graphene and metal layer. In this case, the carriers will generate an additional barrier and increase the contact resistance when passing through the contact interface, which will further cause negative impact on sensitivity [33]. Meantime, the process of removing PMMA is not easy to operate and time consuming. Some research also observed that a substantial amount of PMMA residues may remained on the graphene surface, when was transferred by the conventional process [34].

In this paper, a SPR biosensor based on graphene/Au film/D-POF was proposed for DNA hybridization detection in theory and experiment. Considering D-POF with a core made of PMMA, the conventional process of transfer graphene is not feasible. Consequently, we replaced the role of traditional PMMA with Au film in the transfer process and successfully achieved the structure of Au and Chemical Vapor Deposition (CVD)-grown graphene on the D-POF. This method not only can make full use of the Au, which can be served as a supporting layer for the graphene transfer, and considered as the most suitable metal layer by virtue of its perfect oxidation stability and corrosion resistance, but also can make the hybrid of Au film and graphene contact closely and firmly, which will effectively decrease the contact resistance and can be served as an ideal model for sensitive layer. What’s more, this method for graphene transfer with assist of the Au film can omit the complicated steps of removing PMMA and can effectively avoid the PMMA residues on the graphene surface. With this graphene/Au film/D-POF SPR sensor, we further functionalized the graphene surface, appropriately chose ssDNA serve as specific aptamers, and achieved the better specific recognition result for target DNA with the detection limit of 10−10M. The experimental and theoretical results indicate that there is great potential to develop a facile and cost-effective strategy for SPR detection in medical diagnostics based on our work.

2. Materials and methods

2.1 Material

The probe aptamer DNA, target DNA (t_DNA) and mismatched DNA (mis_DNA) were purchased from Sangon Biotech Inc. (Shanghai, China). The sequence of the probe DNA is 5′-CTT CTG TCT TGA TGT TTG TCA AAC-3′, while the sequence of the complementary target DNA is 5′-GTT TGA CAA ACA TCA AGA CAG AAG-3′. And the mis_DNA is 5′-CAACATTCCGTTAACCATTCCCCA-3′. Phosphate buffered saline (PBS, P5368-10PAK) with a pH of 7.4 was purchased from Sigma-Aldrich (Shanghai, China). The 1-pyrenebutanoic acid succinimidyl ester (PBASE) and dimethyl sulfoxide (DMSO) were obtained from Sigma-Aldrich (Shanghai, China).

2.2 Preparation of D-shaped optical fiber probes

The plastic optical fiber (inner diameter: 1mm) was cut into 15cm long pieces. The fiber cladding and part of the fiber core in the sensing area were removed by side-polishing method and used as sensing area with the length of 1 cm. Then the D-POF was rinsed by deionized water to remove the impurities. Figure 1 illustrates the details of G/Au transfer process. Monolayer graphene grown on high-purity copper foil (G/Cu) was cut into small rectangular stripes (1.5cm*0.5cm). After that, a thin Au film about 50nm was deposited on the graphene-coated copper via thermal evaporation. In detail, 7.5cm Au wire was put into a molybdenum boat (length: 100mm, width: 10 mm, thickness: 0.3 mm). And the G/Cu was placed on the top of molybdenum boat (the distance is 9 cm). When the pressure was pumped to 5 × 10−3 Pa, the Au wire was rapidly evaporated on the surface of G/Cu. Next, the Au/G/Cu was put in the ferric chloride (FeCl3) solution for 8 hours to etch the Cu foil away. After completely removing Cu, the G/Au was rinsed three times by deionized water, and transferred onto the D-shape plastic fiber together. In order to make the G/Au layer contact closely with fiber, the probe was placed on the heating table at 40 degrees for 10 minutes.

 figure: Fig. 1

Fig. 1 Schematic of graphene/Au film transfer.

Download Full Size | PPT Slide | PDF

2.3 DNA detection

Both the probe DNA solution and the mis_DNA solution have the same concentration of 1µM, and the concentration of t_DNA liquids are from 0.01nM to 1µM. Firstly, as a linker reagent, PBASE with concentration of 10mM was prepared by dissolved in DMSO. The prepared PBASE was added onto the graphene surface for 2 hours at room temperature. Then we removed the unmodied PBASE by washing with DMSO and deionized water. Secondly, the lyophilized DNA samples were dissolved and reproduced in PBS solution. The fiber immobilized by PBASE was immersed in the probe DNA solution for 4 hours at room temperature to ensure sufficient reaction between the probe DNA and the PBASE. The unreacted probe DNA was removed by PBS solution and deionized water respectively. Then the complementary target DNA was added onto sensing surface for 50 minutes to ensure complete binding between probe aptamer DNA and t_DNA. Meantime, t_DNA liquids with different concentrations were prepared to test the performances of our proposed D-shape fiber biosensor. To evaluate the specificity for DNA hybridization process, the mis_DNA was added onto another fiber’s sensing area with same geometry.

2.4 Experimental setup

The experimental schematic diagram for measuring the resonance wavelength shift of the D-shape FOSPR sensor is exhibited in Fig. 2. A white light source (tungsten lamp, Ocean Optics HL-2000) with the emission wavelength of 360–2000 nm was conducted into the D-shape FOSPR sensor. The SPR shifts of sensor were captured by a fiber optic spectrometer (PG2000, Ideaoptics Instruments).

 figure: Fig. 2

Fig. 2 Schematic diagram of a D-shaped fiber SPR sensor experimental setup.

Download Full Size | PPT Slide | PDF

3. Results and discussion

3.1 Theoretical calculation for material thickness and number of graphene layers to form optimum configuration

The sensor characteristics were modeled using the finite element method implemented in the COMSOL (RF module) Multiphysics software package. In order to characterize the SPR sensor, the wavelength interrogation method was employed. The basic geometry is shown in Fig. 3(a), where a layer of Au film was covered by graphene. The thickness of Au film and layer of graphene will be optimized later in this paper. The high refractive index of graphene is given byn(λ)=3.0+ic3λ, wherec=5.446μm1 [35,36]. The optical constant of Au is built-in parameters in Rakic. Considering that the model radius only affects the depth of the resonance spectrum and does not affect the resonance wavelength in the mode analysis, we have considered the diameter of the fiber core as 20μm and the cladding as 24μm. The fiber is a step index fiber with a fixed core refractive index of 1.49 and the cladding of 1.4. Based on the phase matching condition between the core mode and the plasmonic mode, surface plasmon (SPP) can be excited when TM polarized light is incident on the metal coated fiber. In order to obtain such a type of coupling from one mode to another, we can use the following equation to represent the mode propagation within the fiber:

α=2k0Im{neff}
β=Re(neff)k0
Here, k0is the wavenumber in vacuum,αis the attenuation constant,βis the propagation constant, andneff is the effective refractive index of the mode. The real part of neffrepresents the propagation constant, and the imaginary part ofneff is proportional to confinement loss. The mode analysis is made on a cross section in the xy-plane of the fiber. The wave propagates in thezdirection and has the form:
E(x,y,z,t)=E(x,y)ej(ωtβz)
Where ω is the angular frequency,zrepresents the propagation distance.

 figure: Fig. 3

Fig. 3 (a) The schematic diagram of model. (b) Transmission spectra of optical fiber SPR sensors with and without single-layer graphene. (Inset) Mode profiles of the surface plasmon mode with single-layer graphene. (c) The relationship between the resonance wavelength and the refractive index corresponding to Au film thickness of 30-60nm. (d) The relationship between the resonance wavelength and the refractive index corresponding to different layers of graphene with 50nm Au.

Download Full Size | PPT Slide | PDF

The transmission spectra of the core modes in two scenarios are plotted in Fig. 3(b). The inset of Fig. 3(b) shows the mode profiles of G/Au FOSPR sensor. We can see clearly that, the resonance peak of the G/Au is deeper than that of the pure Au film, and has a red shift with a narrower full width at half maximum (FWHM), which can be attributed to the high refractive index of graphene. In this case, with the refractive index (RI) of analyte increasing, the graphene-enhanced sensor exhibits a larger shift of the resonance wavelength, which can greatly improve the sensitivity and resolution. To give the optimum for the thickness of Au layer, we calculated the transmission spectra of the proposed model by changing the thickness from 30 to 60nm and achieved the relationship between the resonance wavelength and refractive index was shown in Fig. 3(c). The detection sensitivity is commonly defined askn=Δλ/Δn, where Δnrepresents the change in the RI of the solution, andΔλrepresents the resonance wavelength in SPR spectrum. It can be seen clearly in Fig. 3(c) that the 50 nm Au film provides highest sensitivity as large as 1114.42nm/RIU. What’s more, the addition of a single layer of graphene can further improve the sensitivities especially for 50 nm Au film. Furthermore, we carried out the theoretical calculation to optimize the layer of graphene and achieved the relationship between the resonance wavelength and the refractive index based on the designed structure with different layers of graphene as shown in Fig. 3(d), where we can observe that the sensitivities corresponding to single, double and triple graphene layers are 1259.73, 1164.42 and 1163.45 nm/RIU respectively. This phenomenon may be due to the increasing energy loss of electrons when more graphene layers are added. Therefore, we can conclude that a single layer graphene combining with the 50 nm Au film is the optimal structure that can be used to achieve the best sensitivity of the proposed fiber SPR sensor.

3.2 Characterization of G/Au/D-POF sensor

The quality of chemical vapor deposition (CVD)-grown graphene was determined by a Raman microscopic system(Horiba HR Evolution 800 Raman microscope system). Figure 4(a) shows the Raman spectrum of graphene on copper foil, where we can observe the characteristic peaks (D peak: 1350cm−1, G peak: 1580cm−1 and 2D peak: 2678cm−1) of high-quality and monolayer graphene with a weak D peak and peak intensity ratio of G to 2D of ~0.5. The Raman spectrum of graphene/Au films prepared by thermal evaporation is exhibited in Fig. 4(a) as the red line. Compared with that of the graphene on copper foil, we can clearly see that the intensity of all the characteristic peaks of graphene is higher, which demonstrates the excellent enhancement of local electric field introduced by the Au film [36]. What’s more, the high intensity of the D peak after the thermal evaporation of Au film indicates that the thermal evaporation process may damage the structure of the graphene, which will be beneficial for the modification by functional group. To clearly observe the thickness of the Au film, we evaporated Au onto the SiO2 substrate under the same condition. As the SEM image shown in Fig. 4(b), the thickness of the evaporated Au film is 50nm. The inset of Fig. 4(b) shows the photo of the graphene/Au film in the deionized water, where we can see that the Au film can be well self-supported in the solution. The well self-supported Au film demonstrates that it can successfully keep the integrity of graphene and replace the role of traditional PMMA in the graphene transfer process. Figures 4(c) and 4(d) respectively present the SEM image of the bare D-POF and G/Au fiber SPR sensor. It can be seen that the surface of the fiber is still relatively flat after the G/Au is coated on the fiber surface. which demonstrates that the G/Au hybird contacts with the fiber tightly. The AFM figures of the surface roughness of the fiber surface before and after the transfer are shown as Figs. 4(e) and 4(f). We can see that the roughness of bare D-POF is 0.010µm. And the Au/graphene/D-POF is 0.012µm showing lightly changes compared to bare fiber, which demonstrate that the G/Au hybird has a good contact with fiber.

 figure: Fig. 4

Fig. 4 (a) The Raman spectra of monolayer graphene grown on copper foil and graphene/Au film on fiber. (b) A SEM image of 50nm Au is evaporated onto the SiO2 substrate. Inset: the photo of graphene/Au film in the deionized water. (c) SEM image of bare D-POF. Inset: the surface morphology of the prepared D-shape fiber. (d) SEM image of graphene/Au film/D-POF. Inset: the surface morphology of fabricated SPR sensor. (e) AFM image of bare D-POF. (f) AFM image of Au/graphene/D-POF.

Download Full Size | PPT Slide | PDF

To evaluate the sensitivity of the proposed optical fiber SPR sensor, the D-shape region were immersed in a series of solution with different RI ranging from 1.333 to 1.3557. The spectra of the response signal are detected and shown in Fig. 5(a). It is clear that, the resonance wavelength (the dip in the spectra) exhibits a red shift with RI increasing. What’s more, the response of the resonance wavelength is linear with RI with a high coefficient of determination (R2) up to 0.992 as shown in Fig. 5(b). According to the slope of linear curve, the sensitivity of the proposed sensor was 1227 nm/RIU in experiment, which is well consistent with the theoretical result. To compare the sensing performance of the developed SPR sensor, the detecting sensitivity was compared with that of other plastic optic fiber SPR sensors reported in the literature in Table 1. By the contrast data in Table 1, we can conclude that our proposed sensor presents higher sensitivity than others.

 figure: Fig. 5

Fig. 5 (a) The SPR spectrum of the G/Au SPR sensor with different concentrations of glucose solution. (b) The relationship between the resonance wavelength and the refractive index.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Comparison of sensitivities between some plastic optical fiber sensors.

There are two main reasons for the excellent sensitivity of our D-shaped fiber probes. Firstly, the additional graphene layer plays an important role in analytical performance of optical fiber SPR probes. When graphene coated on the Au film, it can induce significantly large field enhancement at the substrate interface due to the alteration of electronic properties. As we all known, pristine graphene is a zero-bandgap semiconductor with valence and conduction bands touching at the conical points. Since the work function of Au (5.54eV) is higher than graphene (4.5 eV), charge transfer from graphene layer to metal layer will occur under optical excitation. In this case, graphene will become p-type dope as electrons transfer to equilibrate the Fermi levels. The charge transfer will enhance the oscillation of resonant electrons at Au surface, thereby promotes the field of SPP and further result in a higher sensitivity to the target analyte [38]. Another reason for the high sensitivity is that graphene is seamless contacted with Au film, which can effectively decrease the contact resistance, and is almost consistent with the ideal model. Meantime, with this facile transfer method, we can avoid the PMMA residues on the graphene surface, thereby reduce the negative effect on the sensitivity induced by the impurities the performance of sensor.

3.3 Analytical performance of DNA detection

To investigate the feasibility of the G/Au/D-POF sensor in practical application, we attempted to identify DNA using this probe. Firstly, the prepared PBASE was added onto the graphene surface to modify it with the assist of the π- π stacking between pyrene group of PBASE and the six-membered ring of graphene [39], as shown in Fig. 6(a). The binding of probe DNA to PBASE in a saturated state is exhibited in Fig. 6(b). Once the probe DNA added, the succinimide moiety of the PBASE will extend from the surface of the graphene and allow the probe aptamer to immobilized by a conjugation reaction between the probe DNA and the succinimide group of PBASE [40]. Figure 6(c) shows the complementary DNA hybridization process. Since the base sequence of t_DNA is complementary to the probe DNA, the affinity between them is strong. Since the base sequence of mis_DNA is non-complement with the probe aptamer, the mis_DNA cannot form a stable structure with the probe as shown in Fig. 6(d).

 figure: Fig. 6

Fig. 6 (a) Schematic of adding PBASE on graphene surface. (b) Schematic of adding probe DNA. (c) Schematic after adding complementary DNA onto fiber SPR sensor. (d) Schematic of adding mismatched DNA fiber onto fiber SPR sensor.

Download Full Size | PPT Slide | PDF

We collected the transmission spectra during the modification process to investigate the functionalization of the graphene. Just as shown in Fig. 7(a), the resonance wavelength of the modified PBASE (red curve) changes from 617 nm to 633 nm exhibiting a 16nm red shift, which can be attributed to the p-doping effect of the charge transfer between the pyrene group and graphene induced by the addition of the PBASE. For the case of the probe DNA, we can see that the resonance wavelength shifts from 633nm to 641nm (blue curve) with a red shift of 8nm, which can be explained by the electron-rich feature of DNA. Through the above modification process, the surface of the graphene is functional and ready to be used for t_DNA capture. The SPR spectrum of t_DNA liquids with respective concentrations of 0.01nM to 1µM was collected in Fig. 7(b). It is distinct that, with the concentrations of t_DNA increasing, the resonance wavelength exhibits a red shift and the transmission spectrum of 0.01nM is almost ignorable. Consequently the detection limit of our sensor for detecting complementary t_DNA is about 0.1nM. The resonance wavelength shift as a function of the concentration of target DNA exhibited in Fig. 7(c). Here, we use the ratio of the resonance wavelength shifts to the t_DNA concentration change to evaluate the detection accuracy of the proposed fiber sensor. The coefficient of determination (R2) of the fit calibration curve is 0.996, which indicates our sensor have a better surface contact with the analyte. For the case of the mis_DNA, we can see in Fig. 7(d) that the resonance wavelength with probe DNA is 642 and that with mis_DNA is 643.5nm, which is nearly invariable and can be explained by the fact that there is a non-bonding reaction between the probe DNA and mis_DNA strands. Therefore, the refractive index change around the sensing region is relatively weak because they cannot hybridize. To clearly observe the change of resonance wavelength in each step of the modification process, we made a bar chart for better observation as shown in Fig. 7(e). We can observe that the resonance wavelength of our proposed SPR sensor exhibits a red shift in every step of the modification process. As a contrast, we exhibit the difference of the resonance wavelength of the t_ DNA and mis_DNA in Fig. 7(f). The strong contrast of wavelength shift trends demonstrates that our proposed SPR sensor has a good DNA recognition specificity.

 figure: Fig. 7

Fig. 7 (a) SPR spectra of adding different substances onto graphene. (b) SPR spectra of the different complementary DNA. (c) The resonance wavelength shift as a function of the concentration of target DNA. (d) SPR spectra of before and after adding mis_DNA. (e) resonance wavelength as a function of adding PBASE, probe DNA, target DNA. (f) Wavelength shift as a function of the t_ DNA and mis_DNA.

Download Full Size | PPT Slide | PDF

To further assess the performance of sensor for the DNA detection. The responses of the optical fiber SPR biosensor to a series of concentrations of the t_DNA were monitored and recorded in real time. We take 1µM as an example, as shown in Fig. 8(a), from which we can see that as the DNA hybridization proceeding, the transmission spectrum gradually changes. The red curve in Fig. 8(b) presents the wavelength shift as a function of hybridization time, which exhibits a nonlinear change behavior. As the target DNA molecules are continuously captured by modified probe DNA, the RI around the sensing surface would increase accordingly. It is clear that the wavelength shift continuously increase from 0 to 20 min, and when the hybridization time reaches over 20 mins, the wavelength shift tends to be unchanged. This means that DNA hybridization reaction is saturated. Besides, for the complementary target DNA samples with concentrations of 0.1nM, 10 nM and 1µM, the resonance wavelengths show a red shift of 4nm,13nm,15nm and stabilized within 50 minutes. While for the 1µM mis_DNA sample, we can only observe a small wavelength fluctuation of 1.5nm within 50min. This phenomenon indicates that the hybridization response of non-complementary target DNA is weaker than that of the complementary DNA. Meantime, considering the stability of reaction, the resonance wavelength shift is recorded at 50 mins in the later experiment.

 figure: Fig. 8

Fig. 8 (a) The transmission spectra for 1µM double stranded DNA hybridization process. (b) Real-time wavelength shift for mismatched DNA and complementary target DNA.

Download Full Size | PPT Slide | PDF

Table 2 presents the comparison of detection limit of our proposed sensor and other fiber-based structures, which shows that the detection limit of our proposed sensor is comparable with or better than that of most developed SPR sensors. It also indicates that there is an efficient platform for future biological specificity recognition applications.

Tables Icon

Table 2. Comparison of DNA biosensor based on D-POF with other fiber-based structures.

4. Conclusions

A optical fiber SPR biosensor based on graphene/Au film/ D-shape fiber was proposed for DNA hybridization detection. We made graphene and Au film seamless contact using the Au-assist transfer method, and successfully realized the structure of Au and CVD-grown graphene on the D-POF. Both theoretical and experimental results proved that our proposed sensor has a good sensitivity of up to 1227nm/RIU. For the DNA detection, the large changes in the resonance wavelength can be easily distinguished indicating that our sensor can successfully recognize the DNA hybridization. The results imply that our proposed optical fiber SPR biosensors can provide a promising approach to gene sequencing and serve as an effective platform for biological identification due to its low cost, real-time detection, and ease handing.

Funding

National Natural Science Foundation of China (11804200, 11674199, 11747072, 11774208); Shandong Province Natural Science Foundation (ZR2017BA004, 2017GGX20120A); and a Project of Shandong Province Higher Educational Science and Technology Program (J18KZ011).

References

1. K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017). [CrossRef]  

2. M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015). [CrossRef]  

3. A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016). [CrossRef]   [PubMed]  

4. J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017). [CrossRef]  

5. Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015). [CrossRef]   [PubMed]  

6. B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015). [CrossRef]   [PubMed]  

7. Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012). [CrossRef]   [PubMed]  

8. R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002). [CrossRef]   [PubMed]  

9. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018). [CrossRef]  

10. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993). [CrossRef]  

11. S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015). [CrossRef]  

12. A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014). [CrossRef]  

13. N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014). [CrossRef]  

14. S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016). [CrossRef]  

15. A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016). [CrossRef]  

16. D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014). [CrossRef]   [PubMed]  

17. Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015). [CrossRef]   [PubMed]  

18. L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012). [CrossRef]   [PubMed]  

19. M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018). [CrossRef]   [PubMed]  

20. J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018). [CrossRef]   [PubMed]  

21. X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018). [CrossRef]   [PubMed]  

22. W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018). [CrossRef]   [PubMed]  

23. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015). [CrossRef]   [PubMed]  

24. J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018). [CrossRef]   [PubMed]  

25. C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017). [CrossRef]  

26. Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017). [CrossRef]   [PubMed]  

27. W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016). [CrossRef]  

28. W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018). [CrossRef]  

29. S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017). [CrossRef]  

30. Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018). [CrossRef]   [PubMed]  

31. W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018). [CrossRef]  

32. Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018). [CrossRef]   [PubMed]  

33. G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015). [CrossRef]   [PubMed]  

34. T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013). [CrossRef]   [PubMed]  

35. M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017). [CrossRef]  

36. S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013). [CrossRef]  

37. A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018). [CrossRef]   [PubMed]  

38. C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018). [CrossRef]  

39. W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017). [CrossRef]  

40. S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011). [CrossRef]   [PubMed]  

41. D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014). [CrossRef]   [PubMed]  

42. A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012). [CrossRef]  

43. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011). [CrossRef]   [PubMed]  

References

  • View by:

  1. K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
    [Crossref]
  2. M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
    [Crossref]
  3. A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
    [Crossref] [PubMed]
  4. J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
    [Crossref]
  5. Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
    [Crossref] [PubMed]
  6. B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
    [Crossref] [PubMed]
  7. Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
    [Crossref] [PubMed]
  8. R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
    [Crossref] [PubMed]
  9. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
    [Crossref]
  10. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [Crossref]
  11. S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
    [Crossref]
  12. A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
    [Crossref]
  13. N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
    [Crossref]
  14. S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
    [Crossref]
  15. A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016).
    [Crossref]
  16. D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
    [Crossref] [PubMed]
  17. Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
    [Crossref] [PubMed]
  18. L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
    [Crossref] [PubMed]
  19. M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018).
    [Crossref] [PubMed]
  20. J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
    [Crossref] [PubMed]
  21. X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
    [Crossref] [PubMed]
  22. W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018).
    [Crossref] [PubMed]
  23. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref] [PubMed]
  24. J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
    [Crossref] [PubMed]
  25. C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
    [Crossref]
  26. Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
    [Crossref] [PubMed]
  27. W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
    [Crossref]
  28. W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
    [Crossref]
  29. S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
    [Crossref]
  30. Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
    [Crossref] [PubMed]
  31. W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
    [Crossref]
  32. Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
    [Crossref] [PubMed]
  33. G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
    [Crossref] [PubMed]
  34. T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
    [Crossref] [PubMed]
  35. M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
    [Crossref]
  36. S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
    [Crossref]
  37. A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
    [Crossref] [PubMed]
  38. C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
    [Crossref]
  39. W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
    [Crossref]
  40. S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
    [Crossref] [PubMed]
  41. D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
    [Crossref] [PubMed]
  42. A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
    [Crossref]
  43. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
    [Crossref] [PubMed]

2018 (12)

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018).
[Crossref] [PubMed]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref] [PubMed]

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

2017 (7)

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

2016 (4)

A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
[Crossref] [PubMed]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016).
[Crossref]

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

2015 (7)

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
[Crossref]

2014 (4)

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

2013 (2)

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

2012 (3)

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

2011 (2)

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

2002 (1)

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

1993 (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Ahn, S. S.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Albert, J.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Alberto, N.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Allil, R. C. S. B.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

Arcas, A. D. S.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

Arregui, F. J.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

Asgari, A.

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
[Crossref]

Bahrami, M.

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
[Crossref]

Bai, C.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Bilro, L.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Blair, D. A.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Booth, M. A.

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Brynda, E.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Candiani, A.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Cao, E.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Cao, Y.

Cennamo, N.

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

Chen, C. S.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Chen, N.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018).
[Crossref] [PubMed]

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Chen, T. Y.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Childs, P.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Choi, D. S.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Chuang, C. J.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Corradini, R.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Corres, J. M.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

Costina, I.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Cucinotta, A.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

D’Agostino, G.

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

Del Villar, I.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

DeRosa, M. C.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Dutra, F. D. S.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

Feng, D.

Feng, D. J.

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Feng, X.

Francis, T. J.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Gahoi, A.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Gao, S. S.

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Gao, X.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Gao, X. G.

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Ghazinejad, M.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Ghrera, A. S.

A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
[Crossref] [PubMed]

Gowri, A.

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016).
[Crossref]

Guan, B. O.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

Guo, S. R.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Guo, T.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

He, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Homola, J.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Hossain, M. B.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

Hsu, C. L.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Hu, W. H.

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Hua, H.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Huang, Y.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

Huo, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Huo, Y. Y.

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Inum, R.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

Jiang, S.

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Jiang, S. Z.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Jiang, X.

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Kataria, S.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Kim, H.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Kim, Y. N.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Kitzmann, J.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Krajewska, A.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Kwak, Y. H.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Lan, G.

Lan, G. L.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Lee, Y. H.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Lemme, M. C.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Li, C.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Li, C. H.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Li, D.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Li, H. S.

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Li, L. J.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Li, Z.

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liang, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Lin, C. T.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Lin, J.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Lin, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Ling, L.

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

Liu, A.

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Liu, A. H.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, B.

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

Liu, M.

M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Liu, S.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Liu, X.

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Liu, X. Y.

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, Y.

Liu, Y. J.

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Loan, P. T.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Lu, Z.

Lukosius, M.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Luo, S.

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Luo, S. Q.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Lupina, G.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Luxenhofer, O.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Malhotra, B. D.

A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
[Crossref] [PubMed]

Man, B.

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Man, B. Y.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Marchelli, R.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Matias, I. R.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

Mehr, W.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Mei, Y. H.

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Miao, X.

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

Ning, T.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Nogueira, R.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Nong, J.

Nong, J. P.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Östling, M.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Ozkan, C. S.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Ozkan, M.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Pan, J.

Pan, X.

Pandey, M. K.

A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
[Crossref] [PubMed]

Pasternak, I.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Penchev, M.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Pesavento, M.

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

Pinto, J. L.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Pissadakis, S.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Qiu, H. W.

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Ran, Y.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

Rana, M. M.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

Ren, J.

Ruhl, G.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Sai, V. V. R.

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016).
[Crossref]

Sajal, V.

S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
[Crossref]

Selleri, S.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Seo, S.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Shang, Z.

Sharma, N. K.

S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
[Crossref]

Shepherd, P.

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Sheppard, A.

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Shevchenko, Y.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Shi, Y.

Shukla, S.

S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
[Crossref]

Shushama, K. N.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

Si, H.

Slavík, R.

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

Socorro, A. B.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

Song, B.

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

Song, Y.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Sozzi, M.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Strupinski, W.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Sun, D.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

Sun, M.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Sun, Z. C.

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Tahmasebpour, M.

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
[Crossref]

Tang, C.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Tang, L.

Travas-Sejdic, J.

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Tse-Wei Wang, J.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Vaziri, S.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Veneziano, R.

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

Walsh, R.

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Wang, C.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Wang, L.

Wang, M.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Wang, N.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Wang, W.

Wang, X.

Wei, D.

Wei, K. H.

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Wei, W.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref] [PubMed]

W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018).
[Crossref] [PubMed]

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Wenger, C.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Werneck, M. M.

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

Wolff, A.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Wu, J.

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

Wu, M.

Wu, T. F.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Xie, X.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Xing, K.

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

Xiu, X.

Xiu, X. W.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Xu, J.

Xu, S.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

Xu, S. C.

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Xu, Y.

Xu, Y. Y.

Yang, C.

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Yang, J. W.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Yang, W.

Yang, W. S.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Yengel, E.

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

Yi, J.

Yoon, D. H.

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

Yu, J.

Yue, W.

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Yue, W. W.

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Zeni, L.

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

Zhang, C.

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Zhang, G.

M. Liu, Y. Shi, G. Zhang, Y. Zhang, M. Wu, J. Ren, and B. Man, “Surface-enhanced Raman spectroscopy of two-dimensional tin diselenide nanoplates,” Appl. Spectrosc. 72(11), 1613–1620 (2018).
[Crossref] [PubMed]

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Zhang, G. W.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

Zhang, H.

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

Zhang, W.

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

Zhang, X.

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

Zhang, Y.

Zhang, Z.

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

Zhao, X.

Zhong, C. Y.

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Zhu, A.

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

Zhu, B.

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Zhu, Y.

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

Zoth, G.

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

ACS Nano (1)

G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, and W. Mehr, “Residual metallic contamination of transferred chemical vapor deposited graphene,” ACS Nano 9(5), 4776–4785 (2015).
[Crossref] [PubMed]

Adv. Mater. Technol. (1)

C. H. Li, J. Yu, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and flexible plasmonic structure for high-performance SERS application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Anal. Chem. (1)

Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, “Flexible and transparent graphene-based loudspeakers,” Appl. Phys. Lett. 102(15), 151902 (2013).
[Crossref]

Appl. Spectrosc. (1)

Biosens. Bioelectron. (8)

T. Y. Chen, P. T. Loan, C. L. Hsu, Y. H. Lee, J. Tse-Wei Wang, K. H. Wei, C. T. Lin, and L. J. Li, “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron. 41, 103–109 (2013).
[Crossref] [PubMed]

Z. Li, X. Miao, K. Xing, A. Zhu, and L. Ling, “Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles,” Biosens. Bioelectron. 74, 687–690 (2015).
[Crossref] [PubMed]

B. Zhu, M. A. Booth, P. Shepherd, A. Sheppard, and J. Travas-Sejdic, “Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets,” Biosens. Bioelectron. 64, 74–80 (2015).
[Crossref] [PubMed]

Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, and S. Seo, “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron. 37(1), 82–87 (2012).
[Crossref] [PubMed]

R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002).
[Crossref] [PubMed]

A. S. Ghrera, M. K. Pandey, and B. D. Malhotra, “Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection,” Biosens. Bioelectron. 80, 477–482 (2016).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosens. Bioelectron. 61, 541–546 (2014).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, and S. Pissadakis, “Optical fiber ring cavity sensor for label-free DNA detection,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1176–1183 (2012).
[Crossref]

J. Nanosci. Nanotechnol. (1)

S. R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C. S. Ozkan, and M. Ozkan, “Label free DNA detection using large area graphene based field effect transistor biosensors,” J. Nanosci. Nanotechnol. 11(6), 5258–5263 (2011).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

S. Z. Jiang, Z. Li, C. Zhang, S. S. Gao, Z. Li, H. W. Qiu, C. H. Li, C. Yang, M. Liu, and Y. J. Liu, “A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure,” J. Phys. D Appl. Phys. 50(16), 165105 (2017).
[Crossref]

Nanophotonics (1)

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Nanoscale (1)

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref] [PubMed]

Opt. Commun. (1)

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Opt. Commun. 383, 186–190 (2017).
[Crossref]

Opt. Express (8)

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

Z. Lu, H. Si, Z. Li, J. Yu, Y. Liu, D. Feng, C. Zhang, W. Yang, B. Man, and S. Jiang, “Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis,” Opt. Express 26(17), 21626–21641 (2018).
[Crossref] [PubMed]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

X. Zhao, J. Yu, Z. Zhang, C. Li, Z. Li, S. Jiang, J. Pan, A. Liu, C. Zhang, and B. Man, “Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate,” Opt. Express 26(18), 23831–23843 (2018).
[Crossref] [PubMed]

W. Wei, N. Chen, J. Nong, G. Lan, W. Wang, J. Yi, and L. Tang, “Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy,” Opt. Express 26(13), 16903–16916 (2018).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref] [PubMed]

Optik (Stuttg.) (1)

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization,” Optik (Stuttg.) 126(20), 2747–2751 (2015).
[Crossref]

Plasmonics (1)

W. Wei, J. P. Nong, Y. Zhu, G. W. Zhang, N. Wang, S. Q. Luo, N. Chen, G. L. Lan, C. J. Chuang, and Y. Huang, “Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor,” Plasmonics 13(2), 483–491 (2018).
[Crossref]

RSC Advances (3)

M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, “Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film,” RSC Advances 7(75), 47177–47182 (2017).
[Crossref]

W. Yue, C. Tang, C. Wang, C. Bai, S. Liu, X. Xie, H. Hua, Z. Zhang, and D. Li, “An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization,” RSC Advances 7(70), 44559–44567 (2017).
[Crossref]

S. S. Gao, H. W. Qiu, C. Zhang, S. Z. Jiang, Z. Li, X. Y. Liu, W. W. Yue, C. Yang, Y. Y. Huo, D. J. Feng, and H. S. Li, “Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection,” RSC Advances 6(19), 15808–15815 (2016).
[Crossref]

Sens. Actuators B Chem. (8)

A. Gowri and V. V. R. Sai, “Development of LSPR based U-bent plastic optical fiber sensors,” Sens. Actuators B Chem. 230, 536–543 (2016).
[Crossref]

J. Wu, X. Zhang, B. Liu, H. Zhang, and B. Song, “Square-microfiber-integrated biosensor for label-free DNA hybridization detection,” Sens. Actuators B Chem. 252, 1125–1131 (2017).
[Crossref]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

S. Shukla, N. K. Sharma, and V. Sajal, “Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study,” Sens. Actuators B Chem. 206, 463–470 (2015).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

N. Cennamo, G. D’Agostino, M. Pesavento, and L. Zeni, “High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l –nicotine,” Sens. Actuators B Chem. 191, 529–536 (2014).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, Y. J. Liu, X. Gao, A. Liu, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators B Chem. 258, 163–171 (2017).
[Crossref]

W. Wei, J. P. Nong, Y. H. Mei, C. Y. Zhong, G. L. Lan, and W. H. Hu, “Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay,” Sens. Actuators B Chem. 273, 1548–1555 (2018).
[Crossref]

Sensors (Basel) (3)

W. Wei, J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan, and Y. Zhu, “Graphene-based long-period fiber grating surface plasmon reaonance sensor for high-sensitivity gas sensing,” Sensors (Basel) 17(12), 2–12 (2016).
[Crossref]

A. D. S. Arcas, F. D. S. Dutra, R. C. S. B. Allil, and M. M. Werneck, “Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors,” Sensors (Basel) 18(2), 648–663 (2018).
[Crossref] [PubMed]

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors (Basel) 12(9), 12184–12207 (2012).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of graphene/Au film transfer.
Fig. 2
Fig. 2 Schematic diagram of a D-shaped fiber SPR sensor experimental setup.
Fig. 3
Fig. 3 (a) The schematic diagram of model. (b) Transmission spectra of optical fiber SPR sensors with and without single-layer graphene. (Inset) Mode profiles of the surface plasmon mode with single-layer graphene. (c) The relationship between the resonance wavelength and the refractive index corresponding to Au film thickness of 30-60nm. (d) The relationship between the resonance wavelength and the refractive index corresponding to different layers of graphene with 50nm Au.
Fig. 4
Fig. 4 (a) The Raman spectra of monolayer graphene grown on copper foil and graphene/Au film on fiber. (b) A SEM image of 50nm Au is evaporated onto the SiO2 substrate. Inset: the photo of graphene/Au film in the deionized water. (c) SEM image of bare D-POF. Inset: the surface morphology of the prepared D-shape fiber. (d) SEM image of graphene/Au film/D-POF. Inset: the surface morphology of fabricated SPR sensor. (e) AFM image of bare D-POF. (f) AFM image of Au/graphene/D-POF.
Fig. 5
Fig. 5 (a) The SPR spectrum of the G/Au SPR sensor with different concentrations of glucose solution. (b) The relationship between the resonance wavelength and the refractive index.
Fig. 6
Fig. 6 (a) Schematic of adding PBASE on graphene surface. (b) Schematic of adding probe DNA. (c) Schematic after adding complementary DNA onto fiber SPR sensor. (d) Schematic of adding mismatched DNA fiber onto fiber SPR sensor.
Fig. 7
Fig. 7 (a) SPR spectra of adding different substances onto graphene. (b) SPR spectra of the different complementary DNA. (c) The resonance wavelength shift as a function of the concentration of target DNA. (d) SPR spectra of before and after adding mis_DNA. (e) resonance wavelength as a function of adding PBASE, probe DNA, target DNA. (f) Wavelength shift as a function of the t_ DNA and mis_DNA.
Fig. 8
Fig. 8 (a) The transmission spectra for 1µM double stranded DNA hybridization process. (b) Real-time wavelength shift for mismatched DNA and complementary target DNA.

Tables (2)

Tables Icon

Table 1 Comparison of sensitivities between some plastic optical fiber sensors.

Tables Icon

Table 2 Comparison of DNA biosensor based on D-POF with other fiber-based structures.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α=2 k 0 Im{ n eff }
β=Re( n eff ) k 0
E( x,y,z,t )=E( x,y ) e j( ωtβz )

Metrics