Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Real-time 400 Gbps/carrier WDM transmission over 2,000 km of field-installed G.654.E fiber

Open Access Open Access

Abstract

We combine erbium-doped fiber amplifier (EDFA) and backward distributed Raman amplifier (DRA) to achieve the real-time wavelength division multiplexing (WDM) transmission of 400 Gbps/carrier polarization division multiplexing (PDM) 16 quadrature amplitude modulation (QAM) signals over 2,000 km of terrestrial field-deployed cut-off shifted fiber (CSF) compliant with ITU-T G.654.E. This paper compares the transmission performance of 400 Gbps/carrier signals achieved in CSF and standard single-mode fiber (SMF). This transmission distance, 2,019 km, is, to the best of our knowledge, the longest in 400 Gbps/carrier WDM transmission field experiments using digital signal processing (DSP) application specific integrated circuit (ASIC) integrated real-time optical transponders with the technologies to compensate device imperfections; the backward DRA used is fully compliant with laser power safety requirements.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In response to the explosive increase in data communication traffic resulting from the proliferation of mobile services, movie data distribution services, and cloud computing, a dual-carrier 400 Gbps wavelength division multiplexing (WDM) transmission system employing digital coherent optical communication has been developed [1,2]. The transmission capacity of optical communication systems has recently been increased significantly by the adoption of digital signal processing (DSP) and coherent transmission [3,4]. Digital coherent technology has widely been applied to optical links, such as long-haul networks, metro networks, and short-reach networks, particularly data-center interconnects [3,4]. Meeting the recent demand to support multiple applications, DSP must now support multi-rate and multi-modulation formats. For example, DSP on application-specific integrated circuits (ASICs) can support 32 Gbaud based 100 Gbps/carrier quadrature phase shift keying (QPSK), 150 Gbps/carrier 8 quadrature amplitude modulation (QAM), and 200 Gbps/carrier 16QAM with polarization division multiplexing (PDM). To realize capacities of more than 400 Gbps/carrier, the modulation order must be higher than 16 with the symbol rate exceed 64 Gbaud. Recently we demonstrated 500 Gbps/carrier PDM-32QAM transmission over 1,122 km with erbium-doped fiber amplifier (EDFA) and backward distributed Raman amplifier (DRA) [5]. To expand the transmission distance, which demands high optical signal-to-ratio (OSNR) and low fiber nonlinearity, DRA and cut-off shifted fiber (CSF) of large-core pure-silica-core fiber (PSCF) have been deployed in terrestrial links [1,5,6].

We combine EDFA and backward DRA to realize the real-time transmission of 400-Gbps/carrier 67-Gbaud PDM-16QAM WDM signals over 2,019 km with 112.2-km repeater span of ITU-T G.654.E compliant field-deployed CSF fiber. The transmission distance of 2,019 km is, to the best of our knowledge, the longest in terrestrial field experiments and it is achieved by DSP-ASIC-integrated real-time optical transponders with technologies to compensate device imperfections.

2. Experimental setup

Figure 1 shows the setup for our field experiments that used NTT Group’s terrestrial links. The experimental equipment was placed at building A; building B was only for directly looping the transmission lines. Our developed optical transponder consists of a DSP-ASIC based on 16-nm CMOS technology [7] and an IQ modulator (IQM), intradyne coherent receiver (ICR). The Nyquist shaped PDM 67-Gbaud 16QAM signal was generated in the optical transponder; the electrical signals output from the DSP-ASIC were modulated by the IQM in the optical frontend with the optical carrier output from a local oscillator (LO). The ten optical carriers with frequencies from 189.3 to 190.2 THz and spacing of 87.5-GHz or 100-GHz were modulated by an IQM using electrical signals from a DSP-ASIC after being multiplexed by an arrayed waveguide (AWG). The WDM signal was input into an 11-km standard single mode fiber (SMF) to decorrelate the signals. The measured and WDM signals were multiplexed by a wavelength selective switch (WSS).

 figure: Fig. 1.

Fig. 1. Setup for field experiments for 400 Gbps/carrier WDM transmission.

Download Full Size | PPT Slide | PDF

The transmission line consisted of 18 112.2 km field-deployed CSF segments compliant with ITU-T G.654.E (Aeff: 110 µm2) and 10 SMFs segments. The WDM signal was input to field-deployed CSF or SMF between buildings A and B. In building B, the transmission lines were looped by just patch fiber cables. The average optical loss of the CSF transmission link, 20.7 dB per 112.2-km span (0.184 dB/km) at 1580 nm, includes the fusion splice points of the field-deployed fiber, cable termination frames (CTFs), and intra-building fibers. The average optical loss of the SMF transmission link was 22.6 dB per 112.2-km span. After WDM signal transmission across each 112.2-km span, the optical loss was compensated for by EDFA and backward DRA with 1460 and 1480 nm pump lasers. The effective noise figure (NF) of combined EDFA and backward DRA was approximately −2.5 dB. We confirmed that flat Raman gain was obtained in the WDM signal bandwidth (BW). By adequately designing the pump wavelength, flat Raman gain spectra were achieved with the field-deployed fiber. The measured signal in the WDM signals was filtered by an optical band-pass filter (OBPF) after transiting the field-deployed optical fiber link. The measured signal was coherently detected by an ICR with the optical LO in the real-time transponder. Polarization alignment and residual dispersion compensation were realized by an adaptive equalizer (AEQ) with radius directed equalizer (RDE) algorithm. The signal then passed to the carrier phase recovery which compensated the signal phase by Viterbi & Viterbi phase estimation (VVPE) method. The equalized signal was converted from complex form to binary form by the signal demapper. The binary sequence was then corrected with soft and hard decision concatenated forward-error-correction (FEC) with redundancy of approximately 20%. It combined a low-density parity-check (LDPC) with a Reed-Solomon (RS) code and a pilot-aided cycle slip mitigation method [8]. The FEC limit is approximately 5.7 dB.

The signal distortion is caused by the linear frequency response induced from the device imperfection of transmitter (Tx) and receiver (Rx) components in the real-time transponder. The DSP-ASIC has a calibration function to compensate for Tx and Rx frequency response; it uses fixed equalizers (finite impulse response (FIR) filters) in DSP-ASIC. The precise calibration method is discussed in [9]. The approach of separately compensating the amplitude components of the Tx and Rx frequency responses reduces the unnecessary increase in peak-average-to-power-ratio (PAPR) at the transmitter and noise enhancement in the receiver [9]. The transponder was set to achieve 400 Gbps/carrier dual-carrier 67-Gbaud PDM-16QAM signal. In order to use Raman amplification, we confirmed by optical time domain reflectometer (OTDR) that no fiber connection exhibited excessive reflection.

In the experiment, we measured the back-to-back transponder performance of a 400-Gbps/carrier signal. Figure 2 plots the Q-factor margin, from the FEC limit, as a function of OSNR for a 400 Gbps/carrier 67-Gbaud PDM-16QAM signal. The measured signal at the center carrier frequency was set to 189.7 THz. The bandwidth of OSNR is 0.1 nm for 400-Gbps/carrier signal.

 figure: Fig. 2.

Fig. 2. Back-to-back characteristics of 400 Gbps/carrier signal.

Download Full Size | PPT Slide | PDF

3. 400 Gbps/carrier WDM transmission performance using backward DRA in SMF and CSF

Figure 3 plots the measured Raman gain in SMF and CSF. To meet laser power safety requirements, the relationship between the Raman pump light power limit and the shutdown time complies with the safety standard IEC 60825-2. Our safety measures and guidelines on commercial DRA systems were discussed in a prior study [10]. Since the shutdown time of the Raman amplifier used in the experiments is 1 second, maximum Raman light power must be set to 0.9 W or less. Also, as the pump power or Raman gain increases, more noise is induced by Rayleigh scattering [11]. Therefore, we set the pump light so that the Raman gain was 11dB. In order to obtain a Raman gain of 11 dB, the Raman pump powers for CSF and SMF transmission were set to 800mW and 550 mW, respectively.

 figure: Fig. 3.

Fig. 3. Raman gain in SMF and CSF.

Download Full Size | PPT Slide | PDF

Figure 4 plots 400 Gbps/carrier WDM transmission performance for SMF and CSF with 87.5-GHz grid. The measured signal at the center carrier frequency was set to 189.7 THz. The figure also shows a 100-GHz grid for CSF. The transmission performance of CSF was confirmed to be superior to that of SMF. The Q-penalty is defined as the difference in Q factors between back-to-back and after transmission at the same OSNR. Thanks to the combine EDFA and backward DRA for CSF, and real-time transponder with the device imperfection compensation technologies, 400 Gbps/carrier WDM transmission was achieved over 1,000 km in both CSF and SMF. The transmission penalty at the distance of 1,120 km was held to just 0.2 dB by narrowing the frequency grid from 100-GHz to 87.5-GHz.

 figure: Fig. 4.

Fig. 4. Comparison in the Q-penalty versus transmission distance in CSF and SMF.

Download Full Size | PPT Slide | PDF

Figure 5 shows the Q-penalty for WDM signal power with 87.5-GHz grid. Compared to SFM, CSF tolerated larger signal input powers Pin; the optimum input power was 2.5 dBm/carrier. The results confirm that WDM transmission with 100-GHz grid is suitable for further increases in transmission distance while securing adequate Q-margins.

 figure: Fig. 5.

Fig. 5. Variation of Q-penalty for different launch power in CSF and SMF.

Download Full Size | PPT Slide | PDF

4. 400 Gbps/carrier WDM transmission performance over 2,000 km in CSF

Figure 6 plots the net data-rate 400 Gbps/carrier PDM-16QAM transmission performances at the center carrier frequencies of 189.7 and 189.8 THz of the WDM signals with 100-GHz grid in CSF. In 2,019 km transmission experiments, the optimum fiber input power was 2.0 dBm/carrier. The gain of the backward-distributed Raman amplifier was set to 11 dB for each 112-km span. The Q-factor margin is defined as the difference in Q-factor values between FEC limit and after transmission. Even after 2019 km transmission, sufficient OSNR was obtained with the required OSNR of the transponder exceeding 5 dB, and the Q-margin and Q-penalty were 1.3 dB and 3.0 dB, respectively. The WDM signal spectrum and constellation diagram of x/y-polarization signal after transmission showed no deterioration, see Fig. 7. This confirmed real-time error-free transmission in the field environment.

 figure: Fig. 6.

Fig. 6. Q-margin and OSNR versus transmission distance.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7.

Fig. 7. (a) WDM spectra and (b) constellation diagram at the receiver.

Download Full Size | PPT Slide | PDF

Figure 8 shows the long-term stability test results after 2,019-km transmission. The carrier frequencies of the measured signals, 189.7 and 189.8 THz, are the centers of the WDM signals. The signal performances were continuously measured for 60 minutes at intervals of one minute. The pre-FEC Q-margin was more than zero, and we also confirmed that the post-FEC BER was error-free in each measurement. The signals were stably transmitted over 2,019 km with a Q-factor fluctuation of less than or equal to 0.2 dB.

 figure: Fig. 8.

Fig. 8. Long-term stability test at 189.7 and 189.8 THz after 2,019 km transmission.

Download Full Size | PPT Slide | PDF

5. Conclusion

We have demonstrated, to the best of our knowledge, transmitted a 400 Gbps/carrier 67-Gbaud PDM-16QAM WDM signal over the longest distance of 2,019km using field-installed terrestrial ITU-T G.654.E links and our developed real-time transponder with compensation technologies for device imperfection. 112.2-km spans of field-deployed ITU-T G.654.E fiber were used along with EDFA and backward DRA that complied with laser power safety requirements. The transponder used an integrated DSP-ASIC based on 16-nm CMOS technology. We showed that CSF is superior to SMF for 400 Gbps/carrier WDM transmission in achieving a safe level of Raman optical power that permits commercialization. We also demonstrated stable signal performance over field fiber transmission in WDM conditions.

Funding

Ministry of Internal Affairs and Communications (0155-0008, 0155-0037, 0155-0075, 0155-0136, 0155-0171).

Acknowledgments

This work is partly supported by “Research and Development for Information and Communication Technology” of the Ministry of Internal Affairs and Communications, Japan.

Disclosures

The authors declare no conflicts of interest.

References

1. H. Maeda, K. Saito, T. Kotanigawa, S. Yamamoto, F. Hamaoka, M. Yoshida, S. Suzuki, and T. Seki, “Field trial of 400-Gbps transmission using advanced digital coherent technologies,” J. Lightwave Technol. 35(12), 2494–2499 (2017). [CrossRef]  

2. B. Lavgne, O. Bertran-Pardo, C. Bresson, M. Lefrancois, E. Balmefrezol, M. L. Monnier, L. Raddatz, and L. Suberini, “400 Gb/s Real-time trials on commercial systems for next generation networks,” J. Lightwave Technol. 34(2), 477–483 (2016). [CrossRef]  

3. S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017). [CrossRef]  

4. Y. Loussouarn, E. Pincemin, M. Pan, G. Miller, A. Gibbemeyer, and B. Mikkelsen, “Multi-rate multi-format CFP/CFP2 digital coherent interfaces for data center interconnects, metro, and long-haul optical communications,” J. Lightwave Technol. 37(2), 538–547 (2019). [CrossRef]  

5. F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

6. S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

7. O. Ishida, K. Takei, and E. Yamazaki, “Power efficient DSP implementation for 100G-and-beyond multi-haul coherent fiber-optic communications,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3G.3.

8. T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.

9. A. Matsushita, M. Nakamura, F. Hamaoka, S. Okamoto, and Y. Kisaka, “High-spectral-efficiency 600-Gbps/carrier transmission using PDM-256QAM format,” J. Lightwave Technol. 37(2), 470–476 (2019). [CrossRef]  

10. T. Matsuda and A. Naka, “Operational issues facing commercial raman amplifier system: safety measures and system designs,” J. Lightwave Technol. 34(2), 484–490 (2016). [CrossRef]  

11. H. Suzuki, N. Takachio, H. Masuda, and K. Iwatsuki, “Super-dense WDM transmission technology in the zero-dispersion region employing distributed Raman amplification,” J. Lightwave Technol. 21(4), 973–981 (2003). [CrossRef]  

References

  • View by:

  1. H. Maeda, K. Saito, T. Kotanigawa, S. Yamamoto, F. Hamaoka, M. Yoshida, S. Suzuki, and T. Seki, “Field trial of 400-Gbps transmission using advanced digital coherent technologies,” J. Lightwave Technol. 35(12), 2494–2499 (2017).
    [Crossref]
  2. B. Lavgne, O. Bertran-Pardo, C. Bresson, M. Lefrancois, E. Balmefrezol, M. L. Monnier, L. Raddatz, and L. Suberini, “400 Gb/s Real-time trials on commercial systems for next generation networks,” J. Lightwave Technol. 34(2), 477–483 (2016).
    [Crossref]
  3. S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
    [Crossref]
  4. Y. Loussouarn, E. Pincemin, M. Pan, G. Miller, A. Gibbemeyer, and B. Mikkelsen, “Multi-rate multi-format CFP/CFP2 digital coherent interfaces for data center interconnects, metro, and long-haul optical communications,” J. Lightwave Technol. 37(2), 538–547 (2019).
    [Crossref]
  5. F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.
  6. S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.
  7. O. Ishida, K. Takei, and E. Yamazaki, “Power efficient DSP implementation for 100G-and-beyond multi-haul coherent fiber-optic communications,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3G.3.
  8. T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.
  9. A. Matsushita, M. Nakamura, F. Hamaoka, S. Okamoto, and Y. Kisaka, “High-spectral-efficiency 600-Gbps/carrier transmission using PDM-256QAM format,” J. Lightwave Technol. 37(2), 470–476 (2019).
    [Crossref]
  10. T. Matsuda and A. Naka, “Operational issues facing commercial raman amplifier system: safety measures and system designs,” J. Lightwave Technol. 34(2), 484–490 (2016).
    [Crossref]
  11. H. Suzuki, N. Takachio, H. Masuda, and K. Iwatsuki, “Super-dense WDM transmission technology in the zero-dispersion region employing distributed Raman amplification,” J. Lightwave Technol. 21(4), 973–981 (2003).
    [Crossref]

2019 (2)

2017 (2)

H. Maeda, K. Saito, T. Kotanigawa, S. Yamamoto, F. Hamaoka, M. Yoshida, S. Suzuki, and T. Seki, “Field trial of 400-Gbps transmission using advanced digital coherent technologies,” J. Lightwave Technol. 35(12), 2494–2499 (2017).
[Crossref]

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

2016 (2)

2003 (1)

Abe, J.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Akiyama, Y.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Balmefrezol, E.

Bertran-Pardo, O.

Bresson, C.

Chen, H.

S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

Gibbemeyer, A.

Hamaoka, F.

A. Matsushita, M. Nakamura, F. Hamaoka, S. Okamoto, and Y. Kisaka, “High-spectral-efficiency 600-Gbps/carrier transmission using PDM-256QAM format,” J. Lightwave Technol. 37(2), 470–476 (2019).
[Crossref]

H. Maeda, K. Saito, T. Kotanigawa, S. Yamamoto, F. Hamaoka, M. Yoshida, S. Suzuki, and T. Seki, “Field trial of 400-Gbps transmission using advanced digital coherent technologies,” J. Lightwave Technol. 35(12), 2494–2499 (2017).
[Crossref]

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

He, Y.

S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

Horikoshi, K.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Hoshida, T.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Ishida, O.

O. Ishida, K. Takei, and E. Yamazaki, “Power efficient DSP implementation for 100G-and-beyond multi-haul coherent fiber-optic communications,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3G.3.

Iwatsuki, K.

Kametani, S.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

kawahara, H.

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Kisaka, Y.

A. Matsushita, M. Nakamura, F. Hamaoka, S. Okamoto, and Y. Kisaka, “High-spectral-efficiency 600-Gbps/carrier transmission using PDM-256QAM format,” J. Lightwave Technol. 37(2), 470–476 (2019).
[Crossref]

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Kobayashi, T.

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Koike-Akino, T.

T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.

Kojima, K.

T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.

Kotanigawa, T.

Kubo, K.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Kuwahara, S.

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Lavgne, B.

Lefrancois, M.

Li, J.

S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

Loussouarn, Y.

Maeda, H.

H. Maeda, K. Saito, T. Kotanigawa, S. Yamamoto, F. Hamaoka, M. Yoshida, S. Suzuki, and T. Seki, “Field trial of 400-Gbps transmission using advanced digital coherent technologies,” J. Lightwave Technol. 35(12), 2494–2499 (2017).
[Crossref]

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Masuda, H.

Matsuda, T.

Matsui, J.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Matsumoto, W.

T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.

Matsushita, A.

A. Matsushita, M. Nakamura, F. Hamaoka, S. Okamoto, and Y. Kisaka, “High-spectral-efficiency 600-Gbps/carrier transmission using PDM-256QAM format,” J. Lightwave Technol. 37(2), 470–476 (2019).
[Crossref]

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Mikkelsen, B.

Millar, D.

T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.

Miller, G.

Miyamoto, Y.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Miyata, Y.

T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.

Mizuochi, T.

T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.

Monnier, M. L.

Naka, A.

Nakamura, M.

A. Matsushita, M. Nakamura, F. Hamaoka, S. Okamoto, and Y. Kisaka, “High-spectral-efficiency 600-Gbps/carrier transmission using PDM-256QAM format,” J. Lightwave Technol. 37(2), 470–476 (2019).
[Crossref]

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Nakashima, H.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Noguchi, H.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

ogiso, Y.

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Okamoto, S.

A. Matsushita, M. Nakamura, F. Hamaoka, S. Okamoto, and Y. Kisaka, “High-spectral-efficiency 600-Gbps/carrier transmission using PDM-256QAM format,” J. Lightwave Technol. 37(2), 470–476 (2019).
[Crossref]

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Okamoto, T.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Onaka, H.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Ozaki, J.

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Pan, M.

Parsons, K.

T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.

Pincemin, E.

Raddatz, L.

Saito, K.

H. Maeda, K. Saito, T. Kotanigawa, S. Yamamoto, F. Hamaoka, M. Yoshida, S. Suzuki, and T. Seki, “Field trial of 400-Gbps transmission using advanced digital coherent technologies,” J. Lightwave Technol. 35(12), 2494–2499 (2017).
[Crossref]

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Sasai, T.

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Seki, T.

H. Maeda, K. Saito, T. Kotanigawa, S. Yamamoto, F. Hamaoka, M. Yoshida, S. Suzuki, and T. Seki, “Field trial of 400-Gbps transmission using advanced digital coherent technologies,” J. Lightwave Technol. 35(12), 2494–2499 (2017).
[Crossref]

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Shen, S.

S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

Suberini, L.

Sugihara, K.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Sugihara, T.

T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.

Suguhara, T.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Suzuki, H.

Suzuki, S.

Takachio, N.

Takei, K.

O. Ishida, K. Takei, and E. Yamazaki, “Power efficient DSP implementation for 100G-and-beyond multi-haul coherent fiber-optic communications,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3G.3.

Taniguchi, H.

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Tomizawa, M.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

Wang, G.

S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

Wang, H.

S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

Wang, S.

S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

Yamamoto, S.

Yamazaki, E.

O. Ishida, K. Takei, and E. Yamazaki, “Power efficient DSP implementation for 100G-and-beyond multi-haul coherent fiber-optic communications,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3G.3.

Yonenaga, K.

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Yoshida, M.

H. Maeda, K. Saito, T. Kotanigawa, S. Yamamoto, F. Hamaoka, M. Yoshida, S. Suzuki, and T. Seki, “Field trial of 400-Gbps transmission using advanced digital coherent technologies,” J. Lightwave Technol. 35(12), 2494–2499 (2017).
[Crossref]

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

Zhang, C.

S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

Zhao, C.

S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

IEICE Trans. Commun. (1)

S. Okamoto, K. Yonenaga, K. Horikoshi, M. Yoshida, Y. Miyamoto, M. Tomizawa, T. Okamoto, H. Noguchi, J. Abe, J. Matsui, H. Nakashima, Y. Akiyama, T. Hoshida, H. Onaka, K. Sugihara, S. Kametani, K. Kubo, and T. Suguhara, “400 Gbit/s/ch Field demonstration of modulation format adaptation based on pilot-aided OSNR estimation using real-time DSP,” IEICE Trans. Commun. 100(10), 1726–1733 (2017).
[Crossref]

J. Lightwave Technol. (6)

Other (4)

F. Hamaoka, T. Sasai, K. Saito, T. Kobayashi, A. Matsushita, M. Nakamura, H. Taniguchi, S. Kuwahara, H. kawahara, T. Seki, J. Ozaki, Y. ogiso, H. Maeda, Y. kisaka, and M. Tomizawa, “Dual-carrier 1-Tb/s transmission over field-deployed large-core pure-silica-core fiber link using real-time transponder,” in OptoElectronics and Communications Conference (2019), paper PDP.1.

S. Shen, G. Wang, H. Wang, Y. He, S. Wang, C. Zhang, C. Zhao, J. Li, and H. Chen, “G.654.E fibre deployment in terrestrial transport system,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper M3G.4.

O. Ishida, K. Takei, and E. Yamazaki, “Power efficient DSP implementation for 100G-and-beyond multi-haul coherent fiber-optic communications,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3G.3.

T. Koike-Akino, K. Kojima, D. Millar, K. Parsons, Y. Miyata, W. Matsumoto, T. Sugihara, and T. Mizuochi, “Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3A.3.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Setup for field experiments for 400 Gbps/carrier WDM transmission.
Fig. 2.
Fig. 2. Back-to-back characteristics of 400 Gbps/carrier signal.
Fig. 3.
Fig. 3. Raman gain in SMF and CSF.
Fig. 4.
Fig. 4. Comparison in the Q-penalty versus transmission distance in CSF and SMF.
Fig. 5.
Fig. 5. Variation of Q-penalty for different launch power in CSF and SMF.
Fig. 6.
Fig. 6. Q-margin and OSNR versus transmission distance.
Fig. 7.
Fig. 7. (a) WDM spectra and (b) constellation diagram at the receiver.
Fig. 8.
Fig. 8. Long-term stability test at 189.7 and 189.8 THz after 2,019 km transmission.

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved