Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

>100 W GHz femtosecond burst mode all-fiber laser system at 1.0 µm

Open Access Open Access

Abstract

In this work, we report a >100 W femtosecond (fs) burst mode all-fiber laser system at 1.0 µm that operates at an intra-burst repetition rate of up to 1.2 GHz. This fiber laser system provides the highest output power that has been reported so far for GHz fs fiber lasers, to the best of our knowledge. In addition to the superior output power, this fiber laser system also shows a promising overall figure of merit, specifically in terms of pulse width (473 fs), long-term reliability (<0.67% power fluctuation) and system compactness (all-fiber configuration). We anticipate that this all-fiber laser system can be a promising ultrafast laser source for these applications requiring fs pulses with both high average power and high repetition rate, such as micromachining, bioimaging and frequency metrology.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The rapid developments of femtosecond (fs) pulse lasers and chirped pulse amplification (CPA) technologies have enabled the generation of ultrashort laser pulses with extremely high peak power, which is crucial for various scientific, medical and industrial researches [16]. The generation of fs laser pulses has also created new opportunities for a number of interdisciplinary studies, such as fs chemistry [7,8], laser biology [9], strong field physics [10], nonlinear optics [11,12], nanophotonics [13,14] and quantum communication [15,16]. Traditional fs laser systems based on the CPA technology can provide pulse energies ranging from microjoule to millijoule [1720]. However, their pulse repetition rates are usually on the level of kHz to MHz, yielding severely limited average power levels. Moreover, commercial high power fs lasers are mainly based on solid-state oscillators and optical parametric amplifiers with free-space configurations, usually have to be mounted on vibration-isolated optical tables, which creates a major technical obstacle for practical applications.

In the field of material micromachining, specifically, it has been demonstrated that fs laser pulses can enable precise and thermal-damage-free removal of material (e.g., ablation) [2124]. However, conventional fs laser micromachining technologies exhibit slow removal speeds, as well as complicated laser systems mainly resulted from the requirements of both ultrashort pulse duration and high pulse energy. The recent studies [2528] have demonstrated that the throughput of the material removal can be largely increased by using the novel concept of ablation-cooling in conjunction with GHz repetition rate fs pulses, which largely eliminates the need for high energy pulses that usually rely on those complicated laser systems. In this case, the generation of high power high repetition rate fs pulses at burst mode is the backbone of this technology, such that successive pulses arrive before the targeted spot cools down and thus efficiently ablate the extremely hot spot. Consequently, the energy of the individual fs pulse can be significantly reduced without compromising the micromachining speed. In the field of biophotonics, the multi-photon absorption optical microscopy using high-energy fs pulses has become a powerful tool that enables large penetration depth and high spatial resolution. However, conventional fs lasers with a low repetition rate can produce severe photobleaching and phototoxic effects [29]. By contrast, the high repetition rate fs pulses have orders of magnitude lower pulse energy, which can largely minimize these effects and thus show great potentials in life science applications. The optical frequency comb (OFC) technology based on the high repetition rate fs pulse laser, on the other hand, can provide superior spatial accuracy (less than nanometer) and temporal resolution (as good as fs or even attosecond) — a powerful tool for precision optical measurement [3032], optical atomic clock [33,34] and ultrafast spectral analysis [3537]. Last but not least, high repetition rate fs pulses at near-infrared wavelengths are also promising for ultraviolet or mid-infrared frequency comb generations. As a result, fs pulse lasers with high repetition rate and high power are highly demanded in various advanced researches.

Among all kinds of ultrafast laser technologies, fs fiber lasers show superior performances for their small footprint, turn-key operation, good stability, and high beam quality [38]. Conventional high power fs fiber lasers usually employ photonic crystal fibers (PCFs) as gain media, which however are difficult to be fusion-spliced to ordinary optical fibers due to the special air hole structure of PCFs [18]. To this end, the emerging large mode area (LMA) double-cladding doped fibers show great potentials for high power fs fiber lasers that can largely improve the long-term stability and reduce the cost. Despite these fascinating opportunities, high power, high repetition rate fs fiber lasers with all-fiber configurations have been largely unexplored so far [27,28]. In this work, we demonstrate a high power, high repetition rate fs burst mode all-fiber laser system at 1.0 µm. This high power laser system can deliver a 1.2 GHz fs pulse train at a burst rate of 1 MHz. An average power up to 165 W (before dechirping) is obtained. Such a high average power is particularly accomplished by using nonlinear chirped pulse amplification (NCPA) in an all-fiber scheme. The dechirped pulse with a pulse duration of 473 fs has a burst pulse energy of 108 µJ, resulted from the combination of over 600 pulses in a single burst. The number of pulses (or the burst pulse energy) in a single burst can be electronically programmed. This high power fs all-fiber laser system is expected to be promising for various applications, such as material micromachining, bioimaging, as well as ultraviolet and mid-infrared OFC generations.

2. Experimental setup

The configuration of the high power fs all-fiber laser system is schematically illustrated in Fig. 1. The laser system mainly includes six parts: 1) a GHz seed, 2) a pulse stretcher, 3) four stages of pre-amplifier, 4) a burst mode pulse train generator, 5) one stage of main amplifier, and 6) a pulse compressor. To generate the GHz seed pulse, we employed a compact linear laser cavity that leverages the passive mode-locking technology. The configuration of the seed laser is shown in the top box of Fig. 1. The gain medium was a highly doped Yb3+-doped fiber (YDF, 7.5 cm length), which was counter-pumped by a single-mode laser diode (SM-LD, II-IV Inc., 976 nm) through a wavelength division multiplexer (WDM). To ensure the reliability of the seed laser, the YDF was inserted into a ceramic ferrule with an inner diameter of ∼125 µm and then glued. Both end facets of the YDF were polished at a high grade. One end of the YDF was attached to a dielectric film (DF) coated on a passive fiber connector, which was spliced to the common port of the WDM. The opposite end of the YDF was located to a semiconductor saturable absorber mirror (SESAM, Batop GmbH) for passive mode-locking. The laser cavity exhibited a normal dispersion, which usually supports the generation of gain-guided solitons [39]. A polarization controller (PC) was employed at the output port of the WDM to maximize the output power. The whole seed laser was protected from the back reflection by a polarization-maintaining isolator (PM-ISO). A 1:99 optical coupler (OC) was utilized to extract 1% of the seed signal for characterization and monitoring, while the rest (99%) was fed into the nonlinear chirped pulse amplification (NCPA) system.

 figure: Fig. 1.

Fig. 1. The schematic diagram of the laser system. AOM, acousto-optic modulator; BPF, bandpass filter; DF, dielectric film; DCF, double-cladding fiber; FG, function generator; GP, grating pair; ISO, isolator; LD, laser diode; LMA, large mode area; M, mirror; MM, multimode; MPC, multimode pump-signal combiner; OC, optical coupler; PM, polarization-maintaining; PC, polarization controller; SM, single-mode; SMF, single-mode fiber; SESAM, semiconductor saturable absorber mirror; WDM, wavelength division multiplexer; YDF/Yb, Yb3+-doped fiber; Blue line, non-PM fiber; Black line, PM fiber.

Download Full Size | PPT Slide | PDF

In the first pre-amplifier, a YDF (CorActive Yb 401, 60 cm length) was counter-pumped by an SM-LD at 976 nm, after which the average power of the seed signal was boosted to 60 mW. To suppress the amplified spontaneous emission (ASE) light, a bandpass filter (BPF) was employed after the first pre-amplifier. The amplified GHz pulses were then stretched from 4.9 ps to 25 ps by a pulse stretcher, i.e., a long single-mode fiber (SMF, Corning HI1060, 200 m length). After the fiber stretcher, the average power was boosted to 380 mW by the second pre-amplifier, which has a configuration similar to that of the first pre-amplifier except a longer YDF (2 m in this case). A PM-ISO was placed after the second pre-amplifier to enforce the linear polarization operation, and a PC was used to maximize the output power. For burst mode operation, an acousto-optic modulator (AOM) driven by a function generator (FG) was applied, such that both burst rate and duty cycle can be flexibly programmed. Please note that other modulation schemes can also be employed, e.g., those using field-programmable gate arrays (FPGAs) [40]. In this study, the burst rate can be continuously tuned from 1 kHz to 20 MHz, while the duty cycle can be adjusted from 3% to 99%. In this way, the laser system can generate GHz pulse burst with variable pulse number and thus scalable pulse energy. The third pre-amplifier was mainly utilized to compensate for the power loss introduced by the AOM. In the fourth pre-amplifier, a double-cladding gain fiber (Nufern PLMA-YDF-10/125-HI-8, 3.5 m length) was pumped by a high power multimode laser diode (MM-LD, 27 W maximum power), after which an average power of 6.9 W was obtained. The main amplifier was composed of six high power MM-LDs (60 W maximum power for each) and a PM LMA double-cladding gain fiber (Nufern PLMA-YDF-30/250-HI-8, 2.5 m length). After the main amplifier, the signal power was boosted from 6.9 W to 165 W at a pump power of 210 W, corresponding to a power conversion efficiency of 77.8%. A free space ISO was employed after the main amplifier to protect the laser system from the back reflection and ensure the linear polarization output, and afterward the power was reduced to 145 W due to the loss of the ISO. The amplified GHz pulse signal was finally compressed using a pair of transmission gratings (1600 lines/mm). The throughput efficiency of the polarization-sensitive compressor was nearly 74% thanks to the linearly polarized nature of the laser system, resulting in a final output power of 108 W.

3. Results and discussion

The optical spectrum of the laser system was studied by an optical spectrum analyzer (YOKOGAWA AQ6370B). The radiofrequency (RF) spectrum was investigated by a frequency signal analyzer (Rohde & Schwarz FSWP26, 26.5 GHz bandwidth). The temporal pulse train was detected by a high-speed photodiode (12.5 GHz bandwidth) and recorded by a real-time oscilloscope (Keysight DSOV204A, 20 GHz bandwidth). The pulse width was measured by an autocorrelator (APE pulsecheck USB 50).

The average power of the mode-locked seed is ∼19.5 mW at a pump power of 154 mW. As shown in Fig. 2(a), the oscillator operates in the continuous-wave (CW) regime at a pump power of <54.3 mW. In the range of 54.3–127.1 mW, the oscillator operates in the Q-switched mode-locking (QSML) regime. Once the pump power is higher than 127.1 mW, the oscillator transits to the CW mode-locking (CWML) regime. Figure 2(b) presents the optical spectrum of the mode-locked seed that is centered at about 1057 nm, with a spectral bandwidth at full-width half maximum (FWHM) of 3.3 nm. Figure 2(c) illustrates the radiofrequency (RF) spectrum of the mode-locked pulse train, which shows a fundamental repetition rate of 1.2 GHz. A signal-to-noise ratio (SNR) of up to 80 dB implies that the mode-locked operation is free of Q-switched instability. Figure 2(d) shows the pulse train of the CW mode-locking. The pulse train has a temporal period of 0.824 ns, corresponding to a repetition rate of 1.2 GHz. The autocorrelation trace of the seed pulse is shown in Fig. 2(e). Assumed a sech2-pulse profile, the pulse duration is estimated to be 4.9 ps.

 figure: Fig. 2.

Fig. 2. The performance of the GHz seed. (a) The output power of the seed as a function of pump power. QSML: Q-switched mode-locking; CWML: continuous-wave mode-locking. (b) The optical spectrum measured at the 1% port of the OC. Inset shows the linear spectrum. (c) The RF spectrum of the mode-locked pulses. Inset shows the RF spectrum with a wider frequency span. The bandwidth resolution is 100 Hz. (d) The mode-locked pulse train. (e) The autocorrelation trace of the mode-locked pulse.

Download Full Size | PPT Slide | PDF

Under the AOM modulation, the CW pulse train was converted to an externally modulated pulse train, i.e., burst mode pulse train. Figures 3(a)–(c) present the real-time oscilloscopic measurements of burst mode pulse trains with three different duty cycles, i.e., 10%, 30%, and 50%, respectively. The modulation frequency of the RF signal was set to 1 MHz for all three cases. As can be observed, the modulation exhibits a high modulation depth (i.e., about 94%), and the peak intensity of the burst pulse train is uniform within the burst pulse envelope thanks to the high qualities of both mode-locking and modulation. Figures 3(d) and (e) are the close-ups of a single burst and individual pulses for the case of 30% duty cycle, respectively.

 figure: Fig. 3.

Fig. 3. The burst mode pulse trains with different duty cycles. (a) 10% duty cycle. (b) 30% duty cycle. (c) 50% duty cycle. The blue curves are the burst mode pulse trains modulated by different RF signals. The red curves are the RF signals applied to the AOM. Note that, the blue and red curves have been vertically offset for better visualization. (d) The close-up of a single burst for the case of 30% duty cycle. (e) The individual pulses for the case of 30% duty cycle.

Download Full Size | PPT Slide | PDF

We also investigated the spectral broadening effect of the nonlinear chirped pulse amplification. Figure 4 depicts the optical spectra of the high power burst mode pulses at different output powers, i.e., 13 W, 50 W, and 100 W, respectively. Here, three different duty cycles of 10%, 30%, and 50% were studied for each output power. As can be observed, the optical spectrum was increasingly broadened as the duty cycle of the burst mode pulse train was reduced. This is because the total power is distributed to fewer pulses for a smaller duty cycle, leading to larger pulse energy and thus a higher peak power. Therefore, the nonlinear effect is correspondingly stronger for a smaller duty cycle. In Fig. 4(c), especially, the optical spectrum is substantially broadened at a 10% duty cycle, compared with the cases of 30% and 50% duty cycles. Figure 4(d) illustrates the pulse energy as a function of pump power at three different duty cycles, i.e., 10%, 30%, and 50%.

 figure: Fig. 4.

Fig. 4. The optical spectra of the burst mode pulses measured after pulse compressing at different output powers, i.e., (a) 13 W, (b) 50 W and (c) 100 W. Here, three different duty cycles were studied for each case (i.e., 10%, 30%, and 50%). (d) The pulse energy as a function of pump power at different duty cycles.

Download Full Size | PPT Slide | PDF

To give more details about the spectral broadening, we also measured the optical spectra at different output powers after the pulse compressor, i.e., from 1.8 W to 100 W, as shown in Fig. 5. In this case, the duty cycle and repetition rate of the pulse burst were fixed to 10% and 1 MHz, respectively. As shown in Figs. 5(a)-(b), the optical spectrum is almost regularly broadened as the output power increases. Note that the moderate spectral broadening in this study is mainly dominated by the self-phase modulation, which generates frequency chirp that is compressible to transform-limited pulse [41,42]. Here, we employed such a nonlinear effect to obtain spectral broadening and compress the pulse down to the fs regime (as demonstrated in Fig. 6).

 figure: Fig. 5.

Fig. 5. The optical spectra measured after the pulse compressor at different output powers for 1 MHz modulated frequency and 10% duty cycle. (a) The logarithmic spectra. (b) The linear spectra.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. (a) The autocorrelation trace measured at an output power of 108 W. Inset shows the autocorrelation trace with a wider span of 12 ps. (b) The slope efficiency of the main amplifier. (c) The M2 measurement for both x and y directions of the amplified laser beam.

Download Full Size | PPT Slide | PDF

The pulse width after the pulse compressor is 473 fs, assumed a sech2-pulse shape, as shown in Fig. 6(a), which was measured at an average output power of 108 W (after compressing). Please note that the autocorrelation trace of the compressed pulse exhibits fine structures, i.e., the inset of Fig. 6(a), which might have been resulted from the higher order dispersive and nonlinear effects. Figure 6(b) depicts that the power slope efficiency of the main amplifier, which manifests a 77.8% slope efficiency, resulting in an output power up to 165 W at a pump power of 210 W. As shown in Fig. 6(b), no obvious power saturation effect is observed. As a result, a higher output power is potentially achieved, which however requires further efforts in optimizing the temperature of fusion-spliced spots. Figure 6(c) shows the beam quality, which was measured using a standard setup, i.e., a CCD camera (Ophir Photonics Nanoscan STD) mounted on a motorized linear stage. The M2 of the output laser beam is quantified to be 1.11 and 1.39 for x and y directions, respectively. Figure 7 is the measurement of power stability at high output power. The standard deviation of the power fluctuation was quantified to be less than 0.67% over a time span of 30 minutes at an output power up to 130 W (before compressing).

 figure: Fig. 7.

Fig. 7. The long-term power stability, measured at an output power of 130 W (before compressing).

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we have demonstrated a high power GHz fs all-fiber laser that has the superior figure of merit, in terms of the average power, fundamental repetition rate, pulse width, long-term reliability, and system compactness. The average power is up to 165 W at the output of the main amplifier, and an average power of up to 108 W is obtained after the pulse compression. This is the highest power reported so far for the GHz fs burst mode all-fiber laser system, to the best of our knowledge. The pulse width of the current laser system is 473 fs, which can potentially be further compressed by carefully optimizing fiber nonlinearity to further broaden the optical spectrum in the compressible regime. It is believed that this high power fs all-fiber laser will be of great use in the field of micromachining, bioimaging and frequency metrology.

Funding

Guangdong Key Research and Development Program (2018B090904001, 2018B090904003); National Natural Science Foundation of China (U1609219); Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137); Science and Technology Planning Project of Guangdong Province (2017B030314005); National Key Scientific Instrument and Equipment Development Projects of China (61927816).

Disclosures

The authors declare no conflict of interest.

References

1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985). [CrossRef]  

2. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996). [CrossRef]  

3. A. Ashkin, G. Mourou, and D. Strickland, “The 2018 Nobel Prize in physics: a gripping and extremely exciting tale of light,” Curr. Sci. 115(10), 18441848 (2018).

4. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006). [CrossRef]  

5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]  

6. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009). [CrossRef]  

7. A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988). [CrossRef]  

8. P. Baum, D. S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318(5851), 788–792 (2007). [CrossRef]  

9. J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017). [CrossRef]  

10. F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017). [CrossRef]  

11. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]  

12. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010). [CrossRef]  

13. S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, and M. E. Welland, “Direct 3D patterning of TiO2 using femtosecond laser pulses,” Adv. Mater. 19(9), 1218–1221 (2007). [CrossRef]  

14. Y. Zhang, R. E. Russo, and S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).

15. J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017). [CrossRef]  

16. S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017). [CrossRef]  

17. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013). [CrossRef]  

18. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012). [CrossRef]  

19. J. Limpert, F. Röser, T. Schreiber, I. Manek-Hönninger, F. Salin, and A. Tünnermann, “Ultrafast high power fiber laser systems,” C. R. Phys. 7(2), 187–197 (2006). [CrossRef]  

20. H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014). [CrossRef]  

21. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003). [CrossRef]  

22. K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015). [CrossRef]  

23. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016). [CrossRef]  

24. K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014). [CrossRef]  

25. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016). [CrossRef]  

26. H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “High-repetition-rate ultrafast fiber lasers for material processing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–12 (2018). [CrossRef]  

27. P. Elahi, Ö Akçaalan, C. Ertek, K. Eken, FÖ Ilday, and H. Kalaycoglu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018). [CrossRef]  

28. K. Mishchik, G. Bonamis, J. Qiao, J. Lopez, E. Audouard, E. Mottay, C. Honninger, and I. Manek-Honninger, “High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source,” Opt. Lett. 44(9), 2193–2196 (2019). [CrossRef]  

29. N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008). [CrossRef]  

30. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010). [CrossRef]  

31. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]  

32. Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim “Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection,” Nat. Photonics1–6 (2020).

33. Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Q. Shen, M. G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6(5), 680–685 (2019). [CrossRef]  

34. E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019). [CrossRef]  

35. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016). [CrossRef]  

36. A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018). [CrossRef]  

37. M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016). [CrossRef]  

38. M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014). [CrossRef]  

39. H. H. Cheng, W. L. Wang, Y. Zhou, T. Qiao, W. Lin, Y. K. Guo, S. H. Xu, and Z. M. Yang, “High-repetiton-rate ultrafast fiber laser,” Opt. Express 26(13), 16411 (2018). [CrossRef]  

40. S. Yavaş, M. Erdogan, K. GÜrel, FÖ Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012). [CrossRef]  

41. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984). [CrossRef]  

42. K. Tamura and M. Nakazawa, “Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,” Opt. Lett. 21(1), 68–70 (1996). [CrossRef]  

References

  • View by:

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [Crossref]
  2. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
    [Crossref]
  3. A. Ashkin, G. Mourou, and D. Strickland, “The 2018 Nobel Prize in physics: a gripping and extremely exciting tale of light,” Curr. Sci. 115(10), 18441848 (2018).
  4. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
    [Crossref]
  5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  6. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
    [Crossref]
  7. A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
    [Crossref]
  8. P. Baum, D. S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318(5851), 788–792 (2007).
    [Crossref]
  9. J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
    [Crossref]
  10. F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
    [Crossref]
  11. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  12. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
    [Crossref]
  13. S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, and M. E. Welland, “Direct 3D patterning of TiO2 using femtosecond laser pulses,” Adv. Mater. 19(9), 1218–1221 (2007).
    [Crossref]
  14. Y. Zhang, R. E. Russo, and S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).
  15. J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
    [Crossref]
  16. S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
    [Crossref]
  17. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  18. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012).
    [Crossref]
  19. J. Limpert, F. Röser, T. Schreiber, I. Manek-Hönninger, F. Salin, and A. Tünnermann, “Ultrafast high power fiber laser systems,” C. R. Phys. 7(2), 187–197 (2006).
    [Crossref]
  20. H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
    [Crossref]
  21. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
    [Crossref]
  22. K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
    [Crossref]
  23. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  24. K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  25. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
    [Crossref]
  26. H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “High-repetition-rate ultrafast fiber lasers for material processing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–12 (2018).
    [Crossref]
  27. P. Elahi, Ö Akçaalan, C. Ertek, K. Eken, FÖ Ilday, and H. Kalaycoglu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018).
    [Crossref]
  28. K. Mishchik, G. Bonamis, J. Qiao, J. Lopez, E. Audouard, E. Mottay, C. Honninger, and I. Manek-Honninger, “High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source,” Opt. Lett. 44(9), 2193–2196 (2019).
    [Crossref]
  29. N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
    [Crossref]
  30. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  31. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  32. Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim “Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection,” Nat. Photonics1–6 (2020).
  33. Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Q. Shen, M. G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6(5), 680–685 (2019).
    [Crossref]
  34. E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
    [Crossref]
  35. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  36. A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
    [Crossref]
  37. M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
    [Crossref]
  38. M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  39. H. H. Cheng, W. L. Wang, Y. Zhou, T. Qiao, W. Lin, Y. K. Guo, S. H. Xu, and Z. M. Yang, “High-repetiton-rate ultrafast fiber laser,” Opt. Express 26(13), 16411 (2018).
    [Crossref]
  40. S. Yavaş, M. Erdogan, K. GÜrel, FÖ Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012).
    [Crossref]
  41. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984).
    [Crossref]
  42. K. Tamura and M. Nakazawa, “Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,” Opt. Lett. 21(1), 68–70 (1996).
    [Crossref]

2019 (3)

2018 (5)

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “High-repetition-rate ultrafast fiber lasers for material processing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–12 (2018).
[Crossref]

P. Elahi, Ö Akçaalan, C. Ertek, K. Eken, FÖ Ilday, and H. Kalaycoglu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018).
[Crossref]

A. Ashkin, G. Mourou, and D. Strickland, “The 2018 Nobel Prize in physics: a gripping and extremely exciting tale of light,” Curr. Sci. 115(10), 18441848 (2018).

H. H. Cheng, W. L. Wang, Y. Zhou, T. Qiao, W. Lin, Y. K. Guo, S. H. Xu, and Z. M. Yang, “High-repetiton-rate ultrafast fiber laser,” Opt. Express 26(13), 16411 (2018).
[Crossref]

2017 (4)

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

2016 (4)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

2015 (1)

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

2014 (3)

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref]

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

2013 (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

2012 (2)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

S. Yavaş, M. Erdogan, K. GÜrel, FÖ Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012).
[Crossref]

2010 (2)

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

2009 (2)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref]

2008 (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref]

2007 (2)

P. Baum, D. S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318(5851), 788–792 (2007).
[Crossref]

S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, and M. E. Welland, “Direct 3D patterning of TiO2 using femtosecond laser pulses,” Adv. Mater. 19(9), 1218–1221 (2007).
[Crossref]

2006 (3)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. Limpert, F. Röser, T. Schreiber, I. Manek-Hönninger, F. Salin, and A. Tünnermann, “Ultrafast high power fiber laser systems,” C. R. Phys. 7(2), 187–197 (2006).
[Crossref]

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

2005 (1)

Y. Zhang, R. E. Russo, and S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).

2003 (1)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

K. Tamura and M. Nakazawa, “Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,” Opt. Lett. 21(1), 68–70 (1996).
[Crossref]

1988 (1)

A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

1984 (1)

Ahn, C.

Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim “Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection,” Nat. Photonics1–6 (2020).

Akçaalan, Ö

P. Elahi, Ö Akçaalan, C. Ertek, K. Eken, FÖ Ilday, and H. Kalaycoglu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018).
[Crossref]

H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “High-repetition-rate ultrafast fiber lasers for material processing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–12 (2018).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Akhmediev, N.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Ashkin, A.

A. Ashkin, G. Mourou, and D. Strickland, “The 2018 Nobel Prize in physics: a gripping and extremely exciting tale of light,” Curr. Sci. 115(10), 18441848 (2018).

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Audouard, E.

Baum, P.

P. Baum, D. S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318(5851), 788–792 (2007).
[Crossref]

Betzig, E.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref]

Bonamis, G.

Bothwell, T.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Briles, T. C.

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Bulanov, S. V.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Cai, W. Q.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Cao, Y.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Cardenas, J.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Çetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Chan, A. C. S.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Chan, B. M. F.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Chang, X.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Chen, X. W.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Chen, Y. A.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Cheng, H. H.

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Chichkov, B. N.

S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, and M. E. Welland, “Direct 3D patterning of TiO2 using femtosecond laser pulses,” Adv. Mater. 19(9), 1218–1221 (2007).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref]

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dai, H.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Deng, L.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Dias, F.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Diddams, S. A.

Drake, T.

Dudley, J. M.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dutt, A.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Eidam, T.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Eken, K.

Elahi, P.

P. Elahi, Ö Akçaalan, C. Ertek, K. Eken, FÖ Ilday, and H. Kalaycoglu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018).
[Crossref]

H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “High-repetition-rate ultrafast fiber lasers for material processing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–12 (2018).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Eldeniz, Y. B.

Erdogan, M.

Ertek, C.

Fatome, J.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Finot, C.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Fredrick, C.

Gaeta, A. L.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Gandhi, H.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Genty, G.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Giunta, M.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Goban, A.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Gong, Y. H.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Guo, Y. K.

GÜrel, K.

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

He, D.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Hollberg, L.

Holzwarth, R.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Honninger, C.

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Hu, T.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Huang, Y. M.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Hummon, M. T.

Hunt, A. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Hutson, R. B.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Hyun, M.

Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim “Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection,” Nat. Photonics1–6 (2020).

Ilday, FÖ

P. Elahi, Ö Akçaalan, C. Ertek, K. Eken, FÖ Ilday, and H. Kalaycoglu, “High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal,” Opt. Lett. 43(3), 535–538 (2018).
[Crossref]

H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “High-repetition-rate ultrafast fiber lasers for material processing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–12 (2018).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

S. Yavaş, M. Erdogan, K. GÜrel, FÖ Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012).
[Crossref]

Ilic, B. R.

Jansen, F.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Jauregui, C.

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Jeon, C. G.

Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim “Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection,” Nat. Photonics1–6 (2020).

Ji, N.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref]

Ji, X.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Jia, J. J.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Jiang, X. J.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Jiang, Z. Q.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Johnson, C.

Johnson, D. M. S.

Joshi, C.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Kalaycioglu, H.

H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “High-repetition-rate ultrafast fiber lasers for material processing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–12 (2018).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Kalaycoglu, H.

Kedar, D.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Kennedy, C. J.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Kibler, B.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Kim, J.

Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim “Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection,” Nat. Photonics1–6 (2020).

Kim, S.-W.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kitching, J.

Köttig, F.

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref]

Kwon, D.

Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim “Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection,” Nat. Photonics1–6 (2020).

Lam, E. Y.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Lau, A. K. S.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Legero, T.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Li, B.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Li, F. Z.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Li, G. B.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Li, M.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Li, Q.

Li, S. L.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Li, Y.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Li, Y. H.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Li, Z. P.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Liao, S. K.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Limpert, J.

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

J. Limpert, F. Röser, T. Schreiber, I. Manek-Hönninger, F. Salin, and A. Tünnermann, “Ultrafast high power fiber laser systems,” C. R. Phys. 7(2), 187–197 (2006).
[Crossref]

Lin, W.

Lipson, M.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Liu, H.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Liu, N. L.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Liu, W. Y.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Lopez, J.

Lu, C. Y.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Lu, Q. M.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Luke, K.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Ma, L.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Magee, J. C.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Manek-Honninger, I.

Manek-Hönninger, I.

J. Limpert, F. Röser, T. Schreiber, I. Manek-Hönninger, F. Salin, and A. Tünnermann, “Ultrafast high power fiber laser systems,” C. R. Phys. 7(2), 187–197 (2006).
[Crossref]

Mao, S.

Y. Zhang, R. E. Russo, and S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).

Marti, G. E.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Matei, D. G.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Maurice, V.

Mazur, E.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Meyhofer, E.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Millot, G.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Mishchik, K.

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Modsching, N.

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Mottay, E.

Mourou, G.

A. Ashkin, G. Mourou, and D. Strickland, “The 2018 Nobel Prize in physics: a gripping and extremely exciting tale of light,” Curr. Sci. 115(10), 18441848 (2018).

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Mourou, G. A.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Na, Y.

Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim “Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection,” Nat. Photonics1–6 (2020).

Nakazawa, M.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N.

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newman, Z. L.

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Oelker, E.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Okawachi, Y.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Otto, H.-J.

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Pan, J. W.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Papp, S. B.

Passinger, S.

S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, and M. E. Welland, “Direct 3D patterning of TiO2 using femtosecond laser pulses,” Adv. Mater. 19(9), 1218–1221 (2007).
[Crossref]

Peng, C. Z.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Phillips, K.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Qiao, J.

Qiao, T.

Reinhardt, C.

S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, and M. E. Welland, “Direct 3D patterning of TiO2 using femtosecond laser pulses,” Adv. Mater. 19(9), 1218–1221 (2007).
[Crossref]

Ren, G.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Ren, J. G.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Riehle, F.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Robinson, J. M.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Röser, F.

J. Limpert, F. Röser, T. Schreiber, I. Manek-Hönninger, F. Salin, and A. Tünnermann, “Ultrafast high power fiber laser systems,” C. R. Phys. 7(2), 187–197 (2006).
[Crossref]

Russell, P. S. J.

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref]

Russo, R. E.

Y. Zhang, R. E. Russo, and S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).

Saifullah, M. S. M.

S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, and M. E. Welland, “Direct 3D patterning of TiO2 using femtosecond laser pulses,” Adv. Mater. 19(9), 1218–1221 (2007).
[Crossref]

Salin, F.

J. Limpert, F. Röser, T. Schreiber, I. Manek-Hönninger, F. Salin, and A. Tünnermann, “Ultrafast high power fiber laser systems,” C. R. Phys. 7(2), 187–197 (2006).
[Crossref]

Sanner, C.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Schreiber, T.

J. Limpert, F. Röser, T. Schreiber, I. Manek-Hönninger, F. Salin, and A. Tünnermann, “Ultrafast high power fiber laser systems,” C. R. Phys. 7(2), 187–197 (2006).
[Crossref]

Shank, C. V.

Shen, B. Q.

Shen, Q.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Shin, J.

Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim “Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection,” Nat. Photonics1–6 (2020).

Shu, R.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Shum, H. C.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Sonderhouse, L.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Spencer, D. T.

Spooner, G. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Srinivasan, K.

Sterr, U.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Stolen, R. H.

Stone, J. R.

Strickland, D.

A. Ashkin, G. Mourou, and D. Strickland, “The 2018 Nobel Prize in physics: a gripping and extremely exciting tale of light,” Curr. Sci. 115(10), 18441848 (2018).

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Stutzki, F.

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

Subramanian, K. R. V.

S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, and M. E. Welland, “Direct 3D patterning of TiO2 using femtosecond laser pulses,” Adv. Mater. 19(9), 1218–1221 (2007).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Suh, M. G.

Sun, L. H.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Sundaram, S.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Swann, W.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Tajima, T.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Tamura, K.

Tang, A. H. L.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Tani, F.

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref]

Tazebay, U. H.

Tomlinson, W. J.

Travers, J. C.

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref]

Tsia, K. K.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Tünnermann, A.

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

J. Limpert, F. Röser, T. Schreiber, I. Manek-Hönninger, F. Salin, and A. Tünnermann, “Ultrafast high power fiber laser systems,” C. R. Phys. 7(2), 187–197 (2006).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Vahala, K. J.

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Wang, J. F.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Wang, J. Y.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Wang, N.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Wang, Q.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Wang, W. L.

Wang, X. B.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Wei, X.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Welland, M. E.

S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, and M. E. Welland, “Direct 3D patterning of TiO2 using femtosecond laser pulses,” Adv. Mater. 19(9), 1218–1221 (2007).
[Crossref]

Westly, D.

Wong, K. K. Y.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Wu, J.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Wu, J. C.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Xi, T.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Xu, J.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

Xu, S. H.

Xu, Y.

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Yang, D. S.

P. Baum, D. S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318(5851), 788–792 (2007).
[Crossref]

Yang, K. Y.

Yang, Q. F.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

Yang, Z. M.

Yavas, S.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

S. Yavaş, M. Erdogan, K. GÜrel, FÖ Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012).
[Crossref]

Ye, J.

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

Yi, X.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

Yin, J.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Yin, Y. Y.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Zewail, A. H.

P. Baum, D. S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318(5851), 788–792 (2007).
[Crossref]

A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
[Crossref]

Zhang, L.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Zhang, Q.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Zhang, X. X.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Zhang, Y.

Y. Zhang, R. E. Russo, and S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).

Zhou, Y.

Zhou, Y. L.

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

Zhu, Z. C.

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Adv. Mater. (1)

S. Passinger, M. S. M. Saifullah, C. Reinhardt, K. R. V. Subramanian, B. N. Chichkov, and M. E. Welland, “Direct 3D patterning of TiO2 using femtosecond laser pulses,” Adv. Mater. 19(9), 1218–1221 (2007).
[Crossref]

Adv. Opt. Photonics (1)

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Appl. Phys. A (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Appl. Phys. B (1)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[Crossref]

Appl. Phys. Lett. (1)

Y. Zhang, R. E. Russo, and S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).

Biomed. Opt. Express (1)

C. R. Phys. (1)

J. Limpert, F. Röser, T. Schreiber, I. Manek-Hönninger, F. Salin, and A. Tünnermann, “Ultrafast high power fiber laser systems,” C. R. Phys. 7(2), 187–197 (2006).
[Crossref]

Curr. Sci. (1)

A. Ashkin, G. Mourou, and D. Strickland, “The 2018 Nobel Prize in physics: a gripping and extremely exciting tale of light,” Curr. Sci. 115(10), 18441848 (2018).

IEEE J. Sel. Top. Quantum Electron. (2)

H. Kalaycıoğlu, P. Elahi, Ö Akçaalan, and FÖ Ilday, “High-repetition-rate ultrafast fiber lasers for material processing,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–12 (2018).
[Crossref]

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

J. Biophotonics (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (4)

J. Wu, Y. Xu, J. Xu, X. Wei, A. C. S. Chan, A. H. L. Tang, A. K. S. Lau, B. M. F. Chan, H. C. Shum, E. Y. Lam, K. K. Y. Wong, and K. K. Tsia, “Ultrafast laser-scanning time-stretch imaging at visible wavelengths,” Light: Sci. Appl. 6(1), e16196 (2017).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. Appl. 1(4), e8 (2012).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Nat. Methods (1)

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref]

Nat. Photonics (5)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

E. Oelker, R. B. Hutson, C. J. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. E. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks,”,” Nat. Photonics 13(10), 714–719 (2019).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nat. Phys. (1)

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
[Crossref]

Nature (2)

S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549(7670), 43–47 (2017).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and FÖ Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Optica (2)

Phys. Rev. Lett. (1)

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Sci. Adv. (1)

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Science (4)

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
[Crossref]

P. Baum, D. S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318(5851), 788–792 (2007).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, S. K. Liao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, G. B. Li, Q. M. Lu, Y. H. Gong, Y. Xu, S. L. Li, F. Z. Li, Y. Y. Yin, Z. Q. Jiang, M. Li, J. J. Jia, G. Ren, D. He, Y. L. Zhou, X. X. Zhang, N. Wang, X. Chang, Z. C. Zhu, N. L. Liu, Y. A. Chen, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356(6343), 1140–1144 (2017).
[Crossref]

Other (1)

Y. Na, C. G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim “Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection,” Nat. Photonics1–6 (2020).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The schematic diagram of the laser system. AOM, acousto-optic modulator; BPF, bandpass filter; DF, dielectric film; DCF, double-cladding fiber; FG, function generator; GP, grating pair; ISO, isolator; LD, laser diode; LMA, large mode area; M, mirror; MM, multimode; MPC, multimode pump-signal combiner; OC, optical coupler; PM, polarization-maintaining; PC, polarization controller; SM, single-mode; SMF, single-mode fiber; SESAM, semiconductor saturable absorber mirror; WDM, wavelength division multiplexer; YDF/Yb, Yb3+-doped fiber; Blue line, non-PM fiber; Black line, PM fiber.
Fig. 2.
Fig. 2. The performance of the GHz seed. (a) The output power of the seed as a function of pump power. QSML: Q-switched mode-locking; CWML: continuous-wave mode-locking. (b) The optical spectrum measured at the 1% port of the OC. Inset shows the linear spectrum. (c) The RF spectrum of the mode-locked pulses. Inset shows the RF spectrum with a wider frequency span. The bandwidth resolution is 100 Hz. (d) The mode-locked pulse train. (e) The autocorrelation trace of the mode-locked pulse.
Fig. 3.
Fig. 3. The burst mode pulse trains with different duty cycles. (a) 10% duty cycle. (b) 30% duty cycle. (c) 50% duty cycle. The blue curves are the burst mode pulse trains modulated by different RF signals. The red curves are the RF signals applied to the AOM. Note that, the blue and red curves have been vertically offset for better visualization. (d) The close-up of a single burst for the case of 30% duty cycle. (e) The individual pulses for the case of 30% duty cycle.
Fig. 4.
Fig. 4. The optical spectra of the burst mode pulses measured after pulse compressing at different output powers, i.e., (a) 13 W, (b) 50 W and (c) 100 W. Here, three different duty cycles were studied for each case (i.e., 10%, 30%, and 50%). (d) The pulse energy as a function of pump power at different duty cycles.
Fig. 5.
Fig. 5. The optical spectra measured after the pulse compressor at different output powers for 1 MHz modulated frequency and 10% duty cycle. (a) The logarithmic spectra. (b) The linear spectra.
Fig. 6.
Fig. 6. (a) The autocorrelation trace measured at an output power of 108 W. Inset shows the autocorrelation trace with a wider span of 12 ps. (b) The slope efficiency of the main amplifier. (c) The M2 measurement for both x and y directions of the amplified laser beam.
Fig. 7.
Fig. 7. The long-term power stability, measured at an output power of 130 W (before compressing).

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved