Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

2D beam steerer based on metalens on silicon photonics

Open Access Open Access

Abstract

Beam steering with solid-state devices represents the cutting-edge technology for next-generation LiDARs and free-space communication transceivers. Here we demonstrate a platform based on a metalens on a 2D array of switchable silicon microring emitters. This platform enables scalable, efficient, and compact devices that steer in two dimensions using a single wavelength. We show a field of view of 12.4° × 26.8° using an electrical power of less than 83 mW, offering a solution for practical miniature beam steerers.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Solid-state beam steering promises to enable a wide variety of applications including on-chip LiDARs and free-space communication transceivers [120]. Miniature solid-state beam steerers can address the increasing need of precise 3D sensing for self-driving cars, augmented reality and virtual reality as well as high-bandwidth communications. CMOS-compatible silicon photonic platform allows mass production of these devices and can replace conventional bulky beam steerers using mechanical moving parts.

Currently, despite great progress, the scalability of beam steerers on silicon photonic platform has been limited by its high power consumption and the need for widely tunable lasers, which complicate the system and increase the cost. Silicon optical phased arrays have shown promising progress, including scaling to a thousand elements [1,3], integration with frequency-modulated continuous-wave (FMCW) ranging [7,14], steering over 180° field of view (FOV) [13], and operation from visible to near-infrared ranges [10,16]. The high power consumption of these arrays is due to the fact that the power consumption scales linearly with the element count, which also determines the number of resolvable angles (see Appendix), requiring, therefore, the driving of a large number of phase shifters. For example, an optical phased array with a thousand elements can consume tens of watts [2,3] unless a unique technology is employed to decrease the power consumption of individual phase shifter [9,17]. The need for widely tunable lasers is because most optical phased arrays use wavelength-tuned grating diffraction to steer in the direction perpendicular to the array and therefore achieve 2D beam steering [210]. For example, an array based on silicon requires typically tunability of $>$ 50 nm in order to steer over at least 13° [9].

Here we demonstrate a platform for beam-steering with low power consumption using a single wavelength. Compared to conventional optical phased arrays, our platform allows scaling the element counts while maintaining a low power consumption, as well as steering in two dimensions without the need for tunable lasers. The platform, shown in Fig. 1(a), is based on an aberration-free metalens that converts different emission positions, determined by integrated switches, to different far-field angles. The tightly-packed array of microring emitters enables switching of emission positions in a 2D grid. Beam steering based on vertical-cavity surface-emitting laser (VCSEL) arrays [2125] has been studied for LiDARs, free-space communications [26], and laser printing [27]. In contrast to the VCSEL array-based approaches used mostly for time of flight (TOF) ranging, where the lasers emit independently and do not have coherence between each other, our work as well as Ref. [120,28,29] are based on photonic integrated circuits (PICs), which maintain coherence because the light is distributed or routed from a single source. PIC-based approaches allow FMCW ranging, which has advantages over TOF including the ability to measure the speed of the target by Doppler shift as well as the ability to achieve shot-noise-limited detection. Similarly, the VCSEL array-based approach is suitable for communication techniques that do not need coherence, while the PIC-based approach allows coherence communications that include, for example, phase encoding. Beam steering based on a lens on top of a silicon photonic emitter array has been explored with different variations [1820,28,29]. Inoue et al. used a refractive lens on an array of grating emitters [18] with a bulky lens size, where the aberration and the large grating emission area limit the beam quality. L’opez et al. used an on-chip planar lens integrated with a Mach-Zehnder switch array and grating emitters [19]. Their design enables a compact, fully on-chip device, but the on-chip planar lens’s aberration diminishes the beam quality, and a widely tunable laser is needed for steering with dispersive grating diffraction. Ito et al. used a photonic crystal slow-light waveguide to enhance the angular dispersion, achieving beam steering over 40° with a laser wavelength tuning of 23 nm [28,29], combined with a Mach-Zehnder switch array to route the light between photonic crystal waveguide gratings, while a bulky prism lens with a size of several centimeters is used for collimation. Compared to previous works, our platform enables a beam steerer with a miniature size, high beam quality and single-wavelength operation. Metalens [3036], which has an ultrathin and flat form factor, allows compact integration with a silicon photonic circuit. The phase profile of a metalens can be engineered arbitrarily, providing a large design degree of freedom for aberration correction [31,35] and the CMOS-compatibility of metalenses promises future mass production [35]. In order to tune the emission position, we design a silicon photonic switch network terminated by an array of tightly-packed 2D array of microring emitters.

 figure: Fig. 1.

Fig. 1. (a) Schematic of the beam steering platform based on metalens on silicon photonics. MZ : Mach-Zehnder. (b) Schematic of the light routing to a 2D array of microring emitters. Yellow (white) rectangles indicate turned-on (turned-off) Mach-Zehnder switches. Red arrows indicate the path of the light. Each row of microring emitters is connected with a single microheater wire on top of the cladding. (c) Optical microscope image of the silicon photonic switch network. Inset: 2D array of microring emitters. The spacing between the emitters is 7.5 µm in the x-direction and 15 µm in the y-direction.

Download Full Size | PPT Slide | PDF

The platform is based on a metalens on a silicon photonic circuit, as shown in Fig. 1(a). The metalens, made of silicon posts on a fused silica substrate, works as a Fourier-transform lens, which collimates the emission in the near field and converts the different emitter positions to different angles in the far-field. We design a silicon photonic switch network for routing light to one of the microring emitters (Fig. 1(b),(c)). We use a tree of Mach-Zehnder switches to switch the light path actively among $N$ different waveguides (columns in Fig. 1(b)). Each waveguide couples to multiple microrings, as shown in the inset of Fig. 1(c). These microrings have angular gratings on the sidewalls (Fig. 2(a)) and serve as emitters when they are on resonance [3739]. On the oxide cladding, we fabricate metallic microheaters on each row of microring emitters. In order to switch the emission in the 2D grid using this platform, light is routed to a particular column by configuring the Mach-Zehnder switch tree, and then to a particular row by turning on the corresponding row of microheater wire, bringing the desired microring emitter into resonance. Although multiple microring emitters in the same row are all tuned by the microheater wire, light is coupled to one single microring since it is input from only one column waveguide.

 figure: Fig. 2.

Fig. 2. (a) Schematic of a microring emitter with angular gratings on the sidewall. (b) Transmission spectrum of a waveguide coupled to a microring emitter when it is thermally detuned from other microrings. The splitting is due to the coupling between the clock-wise and counter-clock-wise guided modes induced by the grating. (c) Optical microscope image of the fabricated microring emitters and the microheater wire.

Download Full Size | PPT Slide | PDF

Our platform enables scaling the element counts while maintaining a low power consumption due to the small number of turned-on active elements. In contrast to a conventional optical phased array, where the power consumption scales linearly with the element count $N$, the power consumption in our platform scales logarithmically with the number of elements. In a traditional platform, one needs to drive all the phase shifters simultaneously to ensure a determined phase profile because light is distributed to all emitters in an optical phased array. In our platform, in order to route light to a specific direction in the far-field, the power consumption is determined by the power consumption of the Mach-Zehnder switches and the ring resonators. Considering that each Mach-Zehnder switch consumes on average $P_{\pi }/2$ where $P_{\pi }$ is the power needed for producing a phase shift of $\pi$, and $P_{R}$ is the average power needed for tuning each microring, the power consumption $P_{total}$ of an array of $N$ columns and $M$ rows with $s$ microrings sharing the same microheater per row is given by

$$P_{total} = (Log_{2}N)P_{\pi}/2 + s \times P_{R}$$
In Fig. 1(b), the microrings on the same row share a connected microheater. For a large array, this configuration consumes unnecessary power because too much heat is dissipated on the microrings that are not emitting. One can divide the microrings on each row into subgroups with $s$ microrings sharing the same microheater and control each subgroup independently. The choice of $s$ has a trade-off between power consumption and wire routing complexity.

We demonstrate a platform based on a 2D 4 $\times$ 4 tightly-packed array of efficient emitters based on 2.5 µm radius microrings with low sensitivity to fabrication variations. The array pitch is 7.5 µm in one direction, limited by the microring size and 15 µm in the other direction, limited by the thermal crosstalk between the microrings, as shown in Fig. 1(c). To efficiently couple in-plane propagating modes to free space modes, we design angular gratings on the outer sidewalls of the microrings [37,38]. The gratings cover the circumference with an angular period of $\pi$/12 except for the coupling region close to the bus waveguide. We design the grating period to phase-match the guided mode and the free space radiation [37,38]. These gratings also couple the clock-wise and counter-clock-wise guided modes, forming a double-dip shape in the transmission spectrum, which can be fitted with the coupled-mode theory (Fig. 2(b)) [40]. All the microring emitters are designed at the same resonance wavelength, but the resonance is sensitive to fabrication variations due to the high index contrast nature of silicon waveguides. To reduce the sensitivity of the resonance wavelengths to the fabrication variations [41], the microrings are designed using a wide multimode waveguide width of 1.5 µm (see Appendix for measured variation in the resonance wavelength). The sidewall gratings with a protrusion of 20 nm and an angular duty cycle of 0.076 are experimentally optimized for high emission efficiency, using a dedicated calibration fabrication run. To ensure unobstructed light emission from the gratings, we design the platinum (Pt) microheater wire on top of the cladding along the inner sidewall of the microring (Fig. 2(c)).

We design the metalens for a focal length of 90 µm and an FOV of $\pm$ 13.6° using subwavelength-spaced 990 nm tall silicon posts arranged in a hexagonal lattice. We design the phase profile by assigning different post diameters at different positions across the 800 nm spacing lattice. Figure 3(a) shows the library of the metalens simulated by rigorous coupled-mode analysis (RCWA) [42], from which we can produce a phase shift from 0 to 2$\pi$ by varying the post diameter from 200 nm to 534 nm. We use the commercial ray-tracing software Zemax to design the phase profile for aberration correction [31,34]. The phase profile $\phi$(r) in our design is $-1687(r/R)^{2}+1118(r/R)^{4}-1178(r/R)^{6}+933(r/R)^{8}-343(r/R)^{10}$, where $r$ is the radius, and $R$ is a normalization factor that equals to 500 µm. As shown in Fig. 3(b),(c), the metalens with this phase profile collimates the point emitters at different positions and generates diffraction-limited beams over the designed FOV of $\pm$ 13.6°. The scanning electron microscope (SEM) image of the fabricated metalens is shown in Fig. 3(d). We measured a focusing efficiency of 68 $\%$. This efficiency is limited by the fabrication variations of the meta-atom dimensions, which can be improved by optimizing the fabrication accuracy following techniques such as the ones used to recently demonstrate focusing efficiency as high as 82 $\%$ [30].

 figure: Fig. 3.

Fig. 3. (a) Library of the metalens obtained by RCWA. The post diameters near the sharp transmission dip are excluded in the design. Inset: the unit cell of the metalens. (b) Ray-tracing of point emitters located 0, 7.5, and 22.5 µm from the center of the metalens. These emissions are collimated to 0°, 4.47° and 13.6° at the output, respectively. (c) Spot diagrams of the output beams pointing at the three directions in (b), indicating diffraction-limited performance. The black circles indicate the Airy disks. The diagram and the scale bar are displayed with the units of direction cosines. (d) SEM image of the fabricated metalens.

Download Full Size | PPT Slide | PDF

We demonstrate 2D beam steering over a FOV of 12.4° $\times$ 26.8° and a beam divergence of 0.9° using less than 83 mW of electrical power. In order to test the platform, we place the metalens on top of the silicon photonic switch network, and using a manual stage, we adjust the gap between the silicon chip and the metalens to be 90 µm, which corresponds to the focal length of the metalens. We apply voltages to the microheaters using probes and configure the voltages for light emission at each microring emitter. The extinction ratio of the Mach-Zehnder switch is measured to be 26 dB, and for the microring emitters, it is 30 dB (see Appendix). The required voltage to drive the Mach-Zehnder switches and to tune the microring emitters is less than 4.8 V. The emission efficiency, defined as the efficiency from the column waveguide to the free space via the resonant microring emitter, is measured to be 30 $\%$ on average with a standard deviation of 5 $\%$. Figure 4(a),(b) show the far-field angular distributions of the beam when steered at two different directions. The full-width half-maximum (FWHM) divergence angle when steering to ($\theta$, $\phi$) = (-3.4°, -13.4°) is 0.8° (Fig. 4(c)). In Fig. 4(d), we overlap the far-field angular distributions of 4 $\times$ 4 different steering directions, demonstrating a FOV of 12.4° $\times$ 26.8° spaced by 4.1° $\times$ 8.9°. The FWHM divergence angles to all steering directions are 0.9$\pm$0.2°. The measured maximum power consumption $P_{total}$ for steering to any direction, consumed by the Mach-Zehnder switches and the microheaters on microrings, is 83 mW. On average, this 4 $\times$ 4 beam steering device ($N$=4, $M$=4, $s$=4) demonstrates a measured average power consumption of $P_{total}$ = 56 mW. We measure the average $P_{\pi }$ and $P_{R}$ to be 26 mW and 7.7 mW, respectively. The resonance wavelength is tuned by 0.10 nm per mW of heater power. The tunability is lower than the typical value of 0.25 nm per mW because of the lateral offset of the heater from the waveguide mode [43], which can be improved by optimizing the offset and cladding thickness. Note that novel phase shifters with ultra-low power consumption [5,7,9,17] could in principle be used in the switch network of our work. When using the same phase shifters, the power scaling in our architecture will be advantageous.

 figure: Fig. 4.

Fig. 4. (a-b) Far-field angular distributions when steering at ($\theta$, $\phi$) = (5.8°, 12.7°) and (-3.4°, -13.4°), respectively. (c) The cross section of panel (b), showing a FWHM divergence angle of 0.8° in $\theta$ direction. The FWHM divergence angle in $\phi$ direction (not shown) is also 0.8°. (d) Far-field angular distribution that overlaps 16 different steering directions, demonstrating a FOV of 12.4° $\times$ 26.8°.

Download Full Size | PPT Slide | PDF

The demonstrated platform offers a scalable solution for solid-state beam steerer. The FOV, currently limited to $\pm$ 13.6° by the aberration of the metalens, can in principle be extended to more than $\pm$ 30° using a doublet metalens [31,34]. One can reduce the divergence angle and improve the angular resolution by using a metalens with a larger focal length to create a larger output beam. Due to the ultrathin and flat form factor of metalenses, the gap between the silicon photonic chip and the metalens required to generate a larger beam size only introduces minor thickness increase in stark contrast to other approaches using bulky refractive lenses such as Ref. [28], which has a thickness up to centimeters. Our platform also allows for scaling up the $N$ and $M$ numbers with only a mild increase of electrical driving power, as shown by Eq. (1). Based on our measured power consumption per element using Eq. (1), we estimate that the required power for a 1024 $\times$ 128 array with every 16 microrings per row sharing a microheater ($N$=1024, $M$=128, $s$=16) is only 252 mW. This is about two orders of magnitude lower than a conventional optical phased array with a similar element count $N$ [3]. Assuming excess loss of a 1$\times$2 MMI and a 2$\times$2 MMI is 0.06 dB and 0.15 dB [44,45], respectively, and a propagation loss of 2 dB/cm, such an array with 10 stages of Mach-Zehnder switches over a length of 1 cm will incur a total loss of 4.1 dB. Our platform has a lower power handling capability compared to optical phased arrays because all the optical power is guided in one of the waveguides. By keeping the optical power inside the waveguide below $\sim$ 100 mW, the nonlinear loss due to two-photon absorption and the consequent free carrier absorption does not exceed 3 dB/cm [46]. Such a power level has been shown experimentally, for a silicon microring with a comparable quality factor, does not cause damages or produce observable degradation of the quality factor [47]. This power level does induce a thermo-optic red shift of the resonance due to absorption-induced temperature rise, which can be calibrated in our platform by adjusting the microheater driving signals.

Appendix

Device Fabrication

We fabricate the switch network on a silicon-on-insulator (SOI) wafer with a 220 nm top silicon layer and 2 µm buried oxide layer. The design is patterned by electron beam lithography (Elionix ELS-G100) with ma-N 2403 photoresist and etched by inductively coupled plasma (ICP) using fluorine-base chemistry. The silicon waveguides are cladded with 950 nm silicon dioxide (SiO$_{2}$) by plasma-enhanced chemical vapor deposition (PECVD). We sputter 5 nm Ti and 100 nm Pt on top of the SiO$_{2}$ cladding. We pattern the microheater wires using electron beam lithography and transfer the pattern to the Ti/Pt layer by ion milling. Electrical wires and bond pads that connect heater wires are defined using a double layer of Poly(methyl methacrylate) (PMMA) resist patterned with electron beam lithography. We sputter Ti and Al with a total thickness of 430 nm followed by a lift-off process. The metalens is fabricated on a fused silica (SiO$_{2}$) substrate. We deposit 990 nm amorphous silicon using PECVD and pattern the design by electron beam lithography using ZEP 520A and a charge-dissipating layer Espacer. We deposit 60 nm alumina (Al$_{2}$O$_{3}$) using electron beam evaporator followed by lift-off to form a hard mask. The posts are etched by ICP using fluorine-base chemistry and Al$_{2}$O$_{3}$ hard mask is removed by wet etching using a solution of ammonium hydroxide and hydrogen peroxide.

Measurement

We use a laser source (Ando AQ4321D) with the wavelength set slightly larger than the longest resonance wavelengths of the microring emitters. The light is coupled into the silicon photonic chip using an inverse taper and a lensed fiber. Figure 5(a) shows the measured transmission spectrum of four microring emitters that are coupled to the same column waveguide. The standard deviation of the resonance wavelengths is 0.4 nm. The metalens is held on top of the switch network using a positioner and the distance is adjusted to collimate the output beam. The far-field angular distribution of the output beam is measured by a home-made Fourier imaging system, which maps the back focal plane of a microscope objective onto an infrared InGaAs camera, as shown by Fig. 5(b). The background artifacts in Fig. 4(d) is due to multiple reflections in the microscope objective. To calculate the extinction ratio of tuning the microring emitter between on- and off-resonance states, we take two camera images of the two states, as shown in Fig. 5(c-d). The input power is adjusted and calibrated to avoid camera saturation. We integrate the camera counts and calculate the extinction ratio. We measure the coupling efficiency from the microring emitter to the free space by integrating the counts of the camera images. We first take an image on top of the microring emitter when it is on resonance. We take another image on the side of the chip when the microring emitter is off-resonance and the light travels along the same waveguide and leaves the chip from an inverse taper. The ratio between the integrated camera counts of the two images gives the efficiency of the microring emitter.

 figure: Fig. 5.

Fig. 5. (a) Transmission spectrum of four microring emitters that are coupled to the same column waveguide. (b) Fourier imaging system used to characterize the far-field angular distribution of the output beam. FFP: front focal plane of the objective. BFP: back focal plane of the objective. (c-d) The infrared images of the emission from the microring emitter when it is on- and off- resonance. The extinction ratio between the on and off states is 30 dB.

Download Full Size | PPT Slide | PDF

Number of resolvable angles

In our platform, the number of elements in the array determines the number of resolvable angles in the far-field. This statement is also approximately true for optical phased arrays, as demonstrated numerically in Ref. [4]. Here we provide a brief analytical derivation. Consider an optical phased array with $N$ waveguides and an array pitch of $d$. The FOV is given by [3]

$$FOV = 2 sin^{{-}1}(\frac{\lambda}{2d})$$
The far-field distribution of an optical phased array can be estimated by the diffraction of a slit of size $Nd$, which is given by
$$\frac{sin^{2}(\frac{\pi Nd}{\lambda}\theta)}{(\frac{\pi Nd}{\lambda}\theta)^{2}}$$
which has an FWHM divergence angle of
$$\Delta\theta \approx \frac{2.78}{\pi}\frac{\lambda}{Nd}$$
To the first-order Taylor’s expansion, the number of resolvable angles is given by,
$$\frac{FOV}{\Delta\theta} \approx 1.13 N$$
By using the same number of waveguides to form an array, an optical phased array has approximately the same number of resolvable angles as the lens-on-switch-array approach. Therefore, it is fair to compare the power consumption of different approaches with the same number of waveguides.

Calibration

To implement real-time signal calibration in our platform, one can use photodetectors at the end of each column waveguide in contrast to conventional optical phased arrays, where calibration is typically cumbersome due to the need for monitoring the phases of many elements [4]. To calibrate the driving signals, one can configure the Mach-Zehnder switch tree to maximize the photodetector power when all microrings are off-resonance, followed by tuning the microheater on the desired microring to minimize the photodetector power. Using simple power monitoring, this procedure allows operating a network with a large number of microrings, which is often considered challenging due to the strong temperature and fabrication sensitivity.

Funding

Ministry of Science and Technology, Taiwan (108-2218-E- 009-035-MY3); National Science Foundation (1641069); Defense Advanced Research Projects Agency (HR0011-16-C-0107).

Acknowledgments

This work was performed in part at the CUNY Advanced Science Research Center NanoFabrication Facility.

Disclosures

Y.C.C, C.T.P, S.A.M, M.L : Columbia University(P)

References

1. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013). [CrossRef]  

2. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016). [CrossRef]  

3. S. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018). [CrossRef]  

4. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015). [CrossRef]  

5. W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [invited],” Opt. Express 27(3), 3642–3663 (2019). [CrossRef]  

6. K. V. Acoleyen, W. Bogaerts, J. Jágerská, N. L. Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009). [CrossRef]  

7. C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019). [CrossRef]  

8. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014). [CrossRef]  

9. S. A. Miller, Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. J. Gordillo, U. D. Dave, and M. Lipson, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica 7(1), 3–6 (2020). [CrossRef]  

10. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017). [CrossRef]  

11. K. Sayyah, O. Efimov, P. Patterson, J. Schaffner, C. White, J.-F. Seurin, G. Xu, and A. Miglo, “Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers,” Opt. Express 23(15), 19405–19416 (2015). [CrossRef]  

12. R. Fatemi, A. Khachaturian, and A. Hajimiri, “A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019). [CrossRef]  

13. C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.2.

14. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017). [CrossRef]  

15. Y. Wang, G. Zhou, X. Zhang, K. Kwon, P.-A. Blanche, N. Triesault, K. sik Yu, and M. C. Wu, “2d broadband beamsteering with large-scale mems optical phased array,” Optica 6(5), 557–562 (2019). [CrossRef]  

16. M. C. Shin, A. Mohanty, K. Watson, G. R. Bhatt, C. T. Phare, S. A. Miller, M. Zadka, B. S. Lee, X. Ji, I. Datta, and M. Lipson, “Chip-scale blue light phased array,” Opt. Lett. 45(7), 1934–1937 (2020). [CrossRef]  

17. S. Chung, M. Nakai, and H. Hashemi, “Low-power thermo-optic silicon modulator for large-scale photonic integrated systems,” Opt. Express 27(9), 13430–13459 (2019). [CrossRef]  

18. D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “Demonstration of a new optical scanner using silicon photonics integrated circuit,” Opt. Express 27(3), 2499–2508 (2019). [CrossRef]  

19. J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.

20. C. Li, X. Cao, K. Wu, X. Li, and J. Chen, “Lens-based integrated 2d beam-steering device with defocusing approach and broadband pulse operation for lidar application,” Opt. Express 27(23), 32970–32983 (2019). [CrossRef]  

21. D. Sun and M. Rosa, “Integration of vcsel array and microlens for optical scanning,” European Patent: EP 1317038A2, June 4 (2003).

22. M. R. T. Tan, J. William, R. Trutna, and G. Panotopoulos, “Vertical cavity surface emitting laser (vcsel) array laser scanner,” U. S. Patent 7544945B2, June 9 (2009).

23. C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

24. C. J. Chang-Hasnain, “Vcsel array for 3d sensing (plenary talk),” in IEEE Photonics Conf., (2020).

25. C. Lei, “Vcsels for 3d sensing applications,” in Optical Fiber Communication Conference (Optical Society of America, 2020).

26. E. M. Strzelecka, D. A. Louderback, K. Bertilsson, B. J. Thibeault, M. Mondry, and L. A. Coldren, “Free-space optical link realized with microlensed components,” in Proceedings 47th Electronic Components and Technology Conference (1997), pp. 376–381.

27. A. F. Kurtz, D. D. Haas, and N. Pilossof, “Laser beam shaping in array-type laser printing systems,” in Laser Beam Shaping Applications (CRC Press, 2017).

28. H. Ito, Y. Kusunoki, J. Maeda, D. Akiyama, N. Kodama, H. Abe, R. Tetsuya, and T. Baba, “Wide beam steering by slow-light waveguide gratings and a prism lens,” Optica 7(1), 47–52 (2020). [CrossRef]  

29. H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018). [CrossRef]  

30. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 1–6 (2015). [CrossRef]  

31. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 1–9 (2016). [CrossRef]  

32. A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11(7), 415–420 (2017). [CrossRef]  

33. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017). [CrossRef]  

34. B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017). [CrossRef]  

35. J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019). [CrossRef]  

36. R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018). [CrossRef]  

37. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012). [CrossRef]  

38. S. A. Schulz, T. Machula, E. Karimi, and R. W. Boyd, “Integrated multi vector vortex beam generator,” Opt. Express 21(13), 16130–16141 (2013). [CrossRef]  

39. W. Lin, Y. Ota, Y. Arakawa, and S. Iwamoto, “An on-chip full poincaré beam emitter based on an optical micro-ring cavity,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019), p. SW4J.4.

40. M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high q resonators,” Ph.D. dissertation, Ga. Inst. Technol. (2009)

41. Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016). [CrossRef]  

42. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012). [CrossRef]  

43. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4×4 hitless silicon router for optical networks-on-chip (noc),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef]  

44. Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012). [CrossRef]  

45. P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

46. R. Baets, “Silicon photonic integrated circuits,” in Fibre Optic Communication, vol. 161H. Venghaus and N. Grote, eds., Springer Series in Optical Sciences (Springer, 2017), pp. 673–737.

47. S. Yan, J. Dong, A. Zheng, and X. Zhang, “Chip-integrated optical power limiter based on an all-passive micro-ring resonator,” Sci. Rep. 4(1), 6676 (2015). [CrossRef]  

References

  • View by:

  1. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref]
  2. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
    [Crossref]
  3. S. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
    [Crossref]
  4. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
    [Crossref]
  5. W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [invited],” Opt. Express 27(3), 3642–3663 (2019).
    [Crossref]
  6. K. V. Acoleyen, W. Bogaerts, J. Jágerská, N. L. Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
    [Crossref]
  7. C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
    [Crossref]
  8. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
    [Crossref]
  9. S. A. Miller, Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. J. Gordillo, U. D. Dave, and M. Lipson, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica 7(1), 3–6 (2020).
    [Crossref]
  10. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
    [Crossref]
  11. K. Sayyah, O. Efimov, P. Patterson, J. Schaffner, C. White, J.-F. Seurin, G. Xu, and A. Miglo, “Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers,” Opt. Express 23(15), 19405–19416 (2015).
    [Crossref]
  12. R. Fatemi, A. Khachaturian, and A. Hajimiri, “A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
    [Crossref]
  13. C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.2.
  14. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref]
  15. Y. Wang, G. Zhou, X. Zhang, K. Kwon, P.-A. Blanche, N. Triesault, K. sik Yu, and M. C. Wu, “2d broadband beamsteering with large-scale mems optical phased array,” Optica 6(5), 557–562 (2019).
    [Crossref]
  16. M. C. Shin, A. Mohanty, K. Watson, G. R. Bhatt, C. T. Phare, S. A. Miller, M. Zadka, B. S. Lee, X. Ji, I. Datta, and M. Lipson, “Chip-scale blue light phased array,” Opt. Lett. 45(7), 1934–1937 (2020).
    [Crossref]
  17. S. Chung, M. Nakai, and H. Hashemi, “Low-power thermo-optic silicon modulator for large-scale photonic integrated systems,” Opt. Express 27(9), 13430–13459 (2019).
    [Crossref]
  18. D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “Demonstration of a new optical scanner using silicon photonics integrated circuit,” Opt. Express 27(3), 2499–2508 (2019).
    [Crossref]
  19. J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.
  20. C. Li, X. Cao, K. Wu, X. Li, and J. Chen, “Lens-based integrated 2d beam-steering device with defocusing approach and broadband pulse operation for lidar application,” Opt. Express 27(23), 32970–32983 (2019).
    [Crossref]
  21. D. Sun and M. Rosa, “Integration of vcsel array and microlens for optical scanning,” European Patent: EP 1317038A2, June 4 (2003).
  22. M. R. T. Tan, J. William, R. Trutna, and G. Panotopoulos, “Vertical cavity surface emitting laser (vcsel) array laser scanner,” U. S. Patent 7544945B2, June 9 (2009).
  23. C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).
  24. C. J. Chang-Hasnain, “Vcsel array for 3d sensing (plenary talk),” in IEEE Photonics Conf., (2020).
  25. C. Lei, “Vcsels for 3d sensing applications,” in Optical Fiber Communication Conference (Optical Society of America, 2020).
  26. E. M. Strzelecka, D. A. Louderback, K. Bertilsson, B. J. Thibeault, M. Mondry, and L. A. Coldren, “Free-space optical link realized with microlensed components,” in Proceedings 47th Electronic Components and Technology Conference (1997), pp. 376–381.
  27. A. F. Kurtz, D. D. Haas, and N. Pilossof, “Laser beam shaping in array-type laser printing systems,” in Laser Beam Shaping Applications (CRC Press, 2017).
  28. H. Ito, Y. Kusunoki, J. Maeda, D. Akiyama, N. Kodama, H. Abe, R. Tetsuya, and T. Baba, “Wide beam steering by slow-light waveguide gratings and a prism lens,” Optica 7(1), 47–52 (2020).
    [Crossref]
  29. H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018).
    [Crossref]
  30. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 1–6 (2015).
    [Crossref]
  31. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 1–9 (2016).
    [Crossref]
  32. A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11(7), 415–420 (2017).
    [Crossref]
  33. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
    [Crossref]
  34. B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
    [Crossref]
  35. J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
    [Crossref]
  36. R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
    [Crossref]
  37. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
    [Crossref]
  38. S. A. Schulz, T. Machula, E. Karimi, and R. W. Boyd, “Integrated multi vector vortex beam generator,” Opt. Express 21(13), 16130–16141 (2013).
    [Crossref]
  39. W. Lin, Y. Ota, Y. Arakawa, and S. Iwamoto, “An on-chip full poincaré beam emitter based on an optical micro-ring cavity,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019), p. SW4J.4.
  40. M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high q resonators,” Ph.D. dissertation, Ga. Inst. Technol. (2009)
  41. Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
    [Crossref]
  42. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
    [Crossref]
  43. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4×4 hitless silicon router for optical networks-on-chip (noc),” Opt. Express 16(20), 15915–15922 (2008).
    [Crossref]
  44. Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
    [Crossref]
  45. P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.
  46. R. Baets, “Silicon photonic integrated circuits,” in Fibre Optic Communication, vol. 161H. Venghaus and N. Grote, eds., Springer Series in Optical Sciences (Springer, 2017), pp. 673–737.
  47. S. Yan, J. Dong, A. Zheng, and X. Zhang, “Chip-integrated optical power limiter based on an all-passive micro-ring resonator,” Sci. Rep. 4(1), 6676 (2015).
    [Crossref]

2020 (3)

2019 (8)

Y. Wang, G. Zhou, X. Zhang, K. Kwon, P.-A. Blanche, N. Triesault, K. sik Yu, and M. C. Wu, “2d broadband beamsteering with large-scale mems optical phased array,” Optica 6(5), 557–562 (2019).
[Crossref]

J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
[Crossref]

S. Chung, M. Nakai, and H. Hashemi, “Low-power thermo-optic silicon modulator for large-scale photonic integrated systems,” Opt. Express 27(9), 13430–13459 (2019).
[Crossref]

D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “Demonstration of a new optical scanner using silicon photonics integrated circuit,” Opt. Express 27(3), 2499–2508 (2019).
[Crossref]

C. Li, X. Cao, K. Wu, X. Li, and J. Chen, “Lens-based integrated 2d beam-steering device with defocusing approach and broadband pulse operation for lidar application,” Opt. Express 27(23), 32970–32983 (2019).
[Crossref]

R. Fatemi, A. Khachaturian, and A. Hajimiri, “A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [invited],” Opt. Express 27(3), 3642–3663 (2019).
[Crossref]

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

2018 (3)

S. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018).
[Crossref]

2017 (5)

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11(7), 415–420 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref]

2016 (3)

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 1–9 (2016).
[Crossref]

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

2015 (4)

S. Yan, J. Dong, A. Zheng, and X. Zhang, “Chip-integrated optical power limiter based on an all-passive micro-ring resonator,” Sci. Rep. 4(1), 6676 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 1–6 (2015).
[Crossref]

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
[Crossref]

K. Sayyah, O. Efimov, P. Patterson, J. Schaffner, C. White, J.-F. Seurin, G. Xu, and A. Miglo, “Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers,” Opt. Express 23(15), 19405–19416 (2015).
[Crossref]

2014 (1)

2013 (2)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

S. A. Schulz, T. Machula, E. Karimi, and R. W. Boyd, “Integrated multi vector vortex beam generator,” Opt. Express 21(13), 16130–16141 (2013).
[Crossref]

2012 (3)

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

2009 (1)

2008 (1)

Abe, H.

Abediasl, H.

S. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Acoleyen, K. V.

Ahasan, S.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.2.

Akiyama, D.

Arakawa, Y.

W. Lin, Y. Ota, Y. Arakawa, and S. Iwamoto, “An on-chip full poincaré beam emitter based on an optical micro-ring cavity,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019), p. SW4J.4.

Arbabi, A.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11(7), 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 1–9 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 1–6 (2015).
[Crossref]

Arbabi, E.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11(7), 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 1–9 (2016).
[Crossref]

Baba, T.

Baets, R.

K. V. Acoleyen, W. Bogaerts, J. Jágerská, N. L. Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
[Crossref]

R. Baets, “Silicon photonic integrated circuits,” in Fibre Optic Communication, vol. 161H. Venghaus and N. Grote, eds., Springer Series in Optical Sciences (Springer, 2017), pp. 673–737.

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 1–6 (2015).
[Crossref]

Bakker, R. M.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 1–6 (2015).
[Crossref]

Bergman, K.

Bernier, E.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

Bertilsson, K.

E. M. Strzelecka, D. A. Louderback, K. Bertilsson, B. J. Thibeault, M. Mondry, and L. A. Coldren, “Free-space optical link realized with microlensed components,” in Proceedings 47th Electronic Components and Technology Conference (1997), pp. 376–381.

Bhatt, G. R.

Biberman, A.

Blanche, P.-A.

Bogaerts, W.

Bovington, J.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Bovington, J. T.

Bowers, J.

Bowers, J. E.

Boyd, R. W.

Byrd, M. J.

Cai, X.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Cao, X.

Capasso, F.

J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
[Crossref]

Celo, D.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

Chang, Y.-C.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, “Vcsel array for 3d sensing (plenary talk),” in IEEE Photonics Conf., (2020).

Chen, J.

Chen, L.

Chen, R. T.

Chen, W. T.

J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
[Crossref]

Cheng, J.-X.

J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
[Crossref]

Cho, J.

C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

Choi, S.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Chung, S.

S. Chung, M. Nakai, and H. Hashemi, “Low-power thermo-optic silicon modulator for large-scale photonic integrated systems,” Opt. Express 27(9), 13430–13459 (2019).
[Crossref]

S. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Coldren, L. A.

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
[Crossref]

E. M. Strzelecka, D. A. Louderback, K. Bertilsson, B. J. Thibeault, M. Mondry, and L. A. Coldren, “Free-space optical link realized with microlensed components,” in Proceedings 47th Electronic Components and Technology Conference (1997), pp. 376–381.

Cole, D. B.

Coolbaugh, D.

Covey, J.

Cunningham, J. E.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Datta, I.

Dave, U. D.

Davenport, M.

Davenport, M. L.

Djordjevic, S. S.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Dong, J.

S. Yan, J. Dong, A. Zheng, and X. Zhang, “Chip-integrated optical power limiter based on an all-passive micro-ring resonator,” Sci. Rep. 4(1), 6676 (2015).
[Crossref]

Doylend, J. K.

Dumais, P.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

Efimov, O.

Fan, S.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Faraon, A.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11(7), 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 1–9 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 1–6 (2015).
[Crossref]

Fatemi, R.

R. Fatemi, A. Khachaturian, and A. Hajimiri, “A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
[Crossref]

Feshali, A.

Fu, H.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

Fu, Y. H.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Furukado, Y.

Gan, F.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Geng, D.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

Goodwill, D. J.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

Gordillo, O. A. J.

Groever, B.

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
[Crossref]

Haas, D. D.

A. F. Kurtz, D. D. Haas, and N. Pilossof, “Laser beam shaping in array-type laser printing systems,” in Laser Beam Shaping Applications (CRC Press, 2017).

Hajimiri, A.

R. Fatemi, A. Khachaturian, and A. Hajimiri, “A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
[Crossref]

Han, S.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 1–9 (2016).
[Crossref]

Hashemi, H.

S. Chung, M. Nakai, and H. Hashemi, “Low-power thermo-optic silicon modulator for large-scale photonic integrated systems,” Opt. Express 27(9), 13430–13459 (2019).
[Crossref]

S. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Heck, J.

Heck, M. J. R.

Herd, J.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.

Hoonil, J.

C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

Horie, Y.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11(7), 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 1–9 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 1–6 (2015).
[Crossref]

Hosseini, A.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Houdré, R.

Huang, J.

Hulme, J. C.

Hutchison, D. N.

Ichikawa, T.

Inoue, D.

Ito, H.

Iwamoto, S.

W. Lin, Y. Ota, Y. Arakawa, and S. Iwamoto, “An on-chip full poincaré beam emitter based on an optical micro-ring cavity,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019), p. SW4J.4.

Jágerská, J.

Jang, D.

C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

Jeong, C.

C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

Jeong, J.

C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

Ji, X.

Jiang, J.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Jung, J.

C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

Jung, P.

C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

Juodawlkis, P.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.

Kamali, S. M.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11(7), 415–420 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 1–9 (2016).
[Crossref]

Karimi, E.

Kawasaki, A.

Khachaturian, A.

R. Fatemi, A. Khachaturian, and A. Hajimiri, “A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
[Crossref]

Khaidarov, E.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Khandaker, M.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Kharas, D.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.

Khorasaninejad, M.

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

Kim, W.

Kodama, N.

Komljenovic, T.

Kondo, K.

Krishnamoorthy, A. V.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Krishnaswamy, H.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.2.

Krivitsky, L. A.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Kumar, R.

Kurtz, A. F.

A. F. Kurtz, D. D. Haas, and N. Pilossof, “Laser beam shaping in array-type laser printing systems,” in Laser Beam Shaping Applications (CRC Press, 2017).

Kusunoki, Y.

Kuznetsov, A. I.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Kwon, K.

Kwong, D.

Lee, B. G.

Lee, B. S.

Lee, D. Y.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Lee, J.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Lei, C.

C. Lei, “Vcsels for 3d sensing applications,” in Optical Fiber Communication Conference (Optical Society of America, 2020).

Leong, V.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Li, C.

Li, L.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Li, M.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

Li, N.

Li, X.

Liang, X.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Lim, C. M.

C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

Lin, P.

J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
[Crossref]

Lin, S.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Lin, W.

W. Lin, Y. Ota, Y. Arakawa, and S. Iwamoto, “An on-chip full poincaré beam emitter based on an optical micro-ring cavity,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019), p. SW4J.4.

Lipson, M.

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

López, J. J.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.

Louderback, D. A.

E. M. Strzelecka, D. A. Louderback, K. Bertilsson, B. J. Thibeault, M. Mondry, and L. A. Coldren, “Free-space optical link realized with microlensed components,” in Proceedings 47th Electronic Components and Technology Conference (1997), pp. 376–381.

Luo, Y.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Machula, T.

Maeda, J.

Miglo, A.

Miller, S. A.

Mohanty, A.

Mondry, M.

E. M. Strzelecka, D. A. Louderback, K. Bertilsson, B. J. Thibeault, M. Mondry, and L. A. Coldren, “Free-space optical link realized with microlensed components,” in Proceedings 47th Electronic Components and Technology Conference (1997), pp. 376–381.

Nakai, M.

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Ota, Y.

W. Lin, Y. Ota, Y. Arakawa, and S. Iwamoto, “An on-chip full poincaré beam emitter based on an optical micro-ring cavity,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019), p. SW4J.4.

Pang, A.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Paniagua-Domínguez, R.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Panotopoulos, G.

M. R. T. Tan, J. William, R. Trutna, and G. Panotopoulos, “Vertical cavity surface emitting laser (vcsel) array laser scanner,” U. S. Patent 7544945B2, June 9 (2009).

Park, J.-S.

J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
[Crossref]

Patterson, P.

Peters, J. D.

Phare, C. T.

Pilossof, N.

A. F. Kurtz, D. D. Haas, and N. Pilossof, “Laser beam shaping in array-type laser printing systems,” in Laser Beam Shaping Applications (CRC Press, 2017).

Pintus, P.

Poulton, C. V.

Qiu, C.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Raj, K.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Raval, M.

Roberts, S. P.

Rong, H.

Rosa, M.

D. Sun and M. Rosa, “Integration of vcsel array and microlens for optical scanning,” European Patent: EP 1317038A2, June 4 (2003).

Russo, P.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Sayyah, K.

Schaffner, J.

Schulz, S. A.

Seurin, J.-F.

Sharma, J.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.2.

She, A.

J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
[Crossref]

Sheng, Z.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Sherwood-Droz, N.

Shin, M. C.

Shubin, I.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

sik Yu, K.

Skirlo, S. A.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.

Sloan, J.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.

Soljacic, M.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.

Soltani, M.

M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high q resonators,” Ph.D. dissertation, Ga. Inst. Technol. (2009)

Sorace-Agaskar, C.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Stern, B.

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Strzelecka, E. M.

E. M. Strzelecka, D. A. Louderback, K. Bertilsson, B. J. Thibeault, M. Mondry, and L. A. Coldren, “Free-space optical link realized with microlensed components,” in Proceedings 47th Electronic Components and Technology Conference (1997), pp. 376–381.

Su, Z.

Subbaraman, H.

Sun, D.

D. Sun and M. Rosa, “Integration of vcsel array and microlens for optical scanning,” European Patent: EP 1317038A2, June 4 (2003).

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Takeuchi, G.

Takeuchi, M.

Tan, M. R. T.

M. R. T. Tan, J. William, R. Trutna, and G. Panotopoulos, “Vertical cavity surface emitting laser (vcsel) array laser scanner,” U. S. Patent 7544945B2, June 9 (2009).

Tetsuya, R.

Thacker, H.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Thibeault, B. J.

E. M. Strzelecka, D. A. Louderback, K. Bertilsson, B. J. Thibeault, M. Mondry, and L. A. Coldren, “Free-space optical link realized with microlensed components,” in Proceedings 47th Electronic Components and Technology Conference (1997), pp. 376–381.

Thomas, N. L.

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Timurdogan, E.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Torres, A.

Tran, M.

Triesault, N.

Trutna, R.

M. R. T. Tan, J. William, R. Trutna, and G. Panotopoulos, “Vertical cavity surface emitting laser (vcsel) array laser scanner,” U. S. Patent 7544945B2, June 9 (2009).

Tu, X.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

Valuckas, V.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Vermeulen, D.

Wang, H.

Wang, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Wang, X.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Wang, Y.

Wang, Z.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Watson, K.

Watts, M. R.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Wei, Y.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

White, C.

William, J.

M. R. T. Tan, J. William, R. Trutna, and G. Panotopoulos, “Vertical cavity surface emitting laser (vcsel) array laser scanner,” U. S. Patent 7544945B2, June 9 (2009).

Wu, A.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Wu, K.

Wu, M. C.

Xie, W.

Xu, G.

Xu, X.

Yaacobi, A.

Yamashita, T.

Yan, S.

S. Yan, J. Dong, A. Zheng, and X. Zhang, “Chip-integrated optical power limiter based on an all-passive micro-ring resonator,” Sci. Rep. 4(1), 6676 (2015).
[Crossref]

Yao, J.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Yokokawa, T.

Yoon, H.

C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

Yousef, K. M. A.

J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
[Crossref]

Yu, S.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Yu, Y. F.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Zadka, M.

Zhang, S.

J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
[Crossref]

Zhang, X.

Y. Wang, G. Zhou, X. Zhang, K. Kwon, P.-A. Blanche, N. Triesault, K. sik Yu, and M. C. Wu, “2d broadband beamsteering with large-scale mems optical phased array,” Optica 6(5), 557–562 (2019).
[Crossref]

S. Yan, J. Dong, A. Zheng, and X. Zhang, “Chip-integrated optical power limiter based on an all-passive micro-ring resonator,” Sci. Rep. 4(1), 6676 (2015).
[Crossref]

Zhang, Y.

Zhao, F.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

Zheng, A.

S. Yan, J. Dong, A. Zheng, and X. Zhang, “Chip-integrated optical power limiter based on an all-passive micro-ring resonator,” Sci. Rep. 4(1), 6676 (2015).
[Crossref]

Zheng, X.

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Zhou, G.

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Zou, S.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

IEEE J. Solid-State Circuits (2)

S. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

R. Fatemi, A. Khachaturian, and A. Hajimiri, “A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
[Crossref]

IEEE Photonics J. (1)

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos technology,” IEEE Photonics J. 4(6), 2272–2277 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Luo, X. Zheng, S. Lin, J. Yao, H. Thacker, I. Shubin, J. E. Cunningham, J. Lee, S. S. Djordjevic, J. Bovington, D. Y. Lee, K. Raj, and A. V. Krishnamoorthy, “A process-tolerant ring modulator based on multi-mode waveguides,” IEEE Photonics Technol. Lett. 28(13), 1391–1394 (2016).
[Crossref]

Nano Lett. (3)

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
[Crossref]

J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, and F. Capasso, “All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography,” Nano Lett. 19(12), 8673–8682 (2019).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Nat. Commun. (2)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 1–6 (2015).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 1–9 (2016).
[Crossref]

Nat. Photonics (1)

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, “Planar metasurface retroreflector,” Nat. Photonics 11(7), 415–420 (2017).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Opt. Express (9)

J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [invited],” Opt. Express 27(3), 3642–3663 (2019).
[Crossref]

K. Sayyah, O. Efimov, P. Patterson, J. Schaffner, C. White, J.-F. Seurin, G. Xu, and A. Miglo, “Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers,” Opt. Express 23(15), 19405–19416 (2015).
[Crossref]

S. Chung, M. Nakai, and H. Hashemi, “Low-power thermo-optic silicon modulator for large-scale photonic integrated systems,” Opt. Express 27(9), 13430–13459 (2019).
[Crossref]

D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “Demonstration of a new optical scanner using silicon photonics integrated circuit,” Opt. Express 27(3), 2499–2508 (2019).
[Crossref]

C. Li, X. Cao, K. Wu, X. Li, and J. Chen, “Lens-based integrated 2d beam-steering device with defocusing approach and broadband pulse operation for lidar application,” Opt. Express 27(23), 32970–32983 (2019).
[Crossref]

H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4×4 hitless silicon router for optical networks-on-chip (noc),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref]

S. A. Schulz, T. Machula, E. Karimi, and R. W. Boyd, “Integrated multi vector vortex beam generator,” Opt. Express 21(13), 16130–16141 (2013).
[Crossref]

Opt. Lett. (5)

Optica (4)

Sci. Rep. (1)

S. Yan, J. Dong, A. Zheng, and X. Zhang, “Chip-integrated optical power limiter based on an all-passive micro-ring resonator,” Sci. Rep. 4(1), 6676 (2015).
[Crossref]

Science (2)

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref]

Other (13)

D. Sun and M. Rosa, “Integration of vcsel array and microlens for optical scanning,” European Patent: EP 1317038A2, June 4 (2003).

M. R. T. Tan, J. William, R. Trutna, and G. Panotopoulos, “Vertical cavity surface emitting laser (vcsel) array laser scanner,” U. S. Patent 7544945B2, June 9 (2009).

C. M. Lim, J. Hoonil, C. Jeong, H. Yoon, J. Jung, J. Cho, P. Jung, D. Jang, and J. Jeong, “Application of 2D matrix-addressable VCSEL arrays with micropatterned lensplates for the solid-state LiDAR sensors (Conference Presentation),” in Proc. SPIE OPTO, Vertical-Cavity Surface-Emitting Lasers XXIV, vol. 11300 (2020).

C. J. Chang-Hasnain, “Vcsel array for 3d sensing (plenary talk),” in IEEE Photonics Conf., (2020).

C. Lei, “Vcsels for 3d sensing applications,” in Optical Fiber Communication Conference (Optical Society of America, 2020).

E. M. Strzelecka, D. A. Louderback, K. Bertilsson, B. J. Thibeault, M. Mondry, and L. A. Coldren, “Free-space optical link realized with microlensed components,” in Proceedings 47th Electronic Components and Technology Conference (1997), pp. 376–381.

A. F. Kurtz, D. D. Haas, and N. Pilossof, “Laser beam shaping in array-type laser printing systems,” in Laser Beam Shaping Applications (CRC Press, 2017).

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens enabled beam steering for chip-scale lidar,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.1.

C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), p. SM3I.2.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference (Optical Society of America, 2016), p. W2A.19.

R. Baets, “Silicon photonic integrated circuits,” in Fibre Optic Communication, vol. 161H. Venghaus and N. Grote, eds., Springer Series in Optical Sciences (Springer, 2017), pp. 673–737.

W. Lin, Y. Ota, Y. Arakawa, and S. Iwamoto, “An on-chip full poincaré beam emitter based on an optical micro-ring cavity,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019), p. SW4J.4.

M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high q resonators,” Ph.D. dissertation, Ga. Inst. Technol. (2009)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the beam steering platform based on metalens on silicon photonics. MZ : Mach-Zehnder. (b) Schematic of the light routing to a 2D array of microring emitters. Yellow (white) rectangles indicate turned-on (turned-off) Mach-Zehnder switches. Red arrows indicate the path of the light. Each row of microring emitters is connected with a single microheater wire on top of the cladding. (c) Optical microscope image of the silicon photonic switch network. Inset: 2D array of microring emitters. The spacing between the emitters is 7.5 µm in the x-direction and 15 µm in the y-direction.
Fig. 2.
Fig. 2. (a) Schematic of a microring emitter with angular gratings on the sidewall. (b) Transmission spectrum of a waveguide coupled to a microring emitter when it is thermally detuned from other microrings. The splitting is due to the coupling between the clock-wise and counter-clock-wise guided modes induced by the grating. (c) Optical microscope image of the fabricated microring emitters and the microheater wire.
Fig. 3.
Fig. 3. (a) Library of the metalens obtained by RCWA. The post diameters near the sharp transmission dip are excluded in the design. Inset: the unit cell of the metalens. (b) Ray-tracing of point emitters located 0, 7.5, and 22.5 µm from the center of the metalens. These emissions are collimated to 0°, 4.47° and 13.6° at the output, respectively. (c) Spot diagrams of the output beams pointing at the three directions in (b), indicating diffraction-limited performance. The black circles indicate the Airy disks. The diagram and the scale bar are displayed with the units of direction cosines. (d) SEM image of the fabricated metalens.
Fig. 4.
Fig. 4. (a-b) Far-field angular distributions when steering at ($\theta$, $\phi$) = (5.8°, 12.7°) and (-3.4°, -13.4°), respectively. (c) The cross section of panel (b), showing a FWHM divergence angle of 0.8° in $\theta$ direction. The FWHM divergence angle in $\phi$ direction (not shown) is also 0.8°. (d) Far-field angular distribution that overlaps 16 different steering directions, demonstrating a FOV of 12.4° $\times$ 26.8°.
Fig. 5.
Fig. 5. (a) Transmission spectrum of four microring emitters that are coupled to the same column waveguide. (b) Fourier imaging system used to characterize the far-field angular distribution of the output beam. FFP: front focal plane of the objective. BFP: back focal plane of the objective. (c-d) The infrared images of the emission from the microring emitter when it is on- and off- resonance. The extinction ratio between the on and off states is 30 dB.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P t o t a l = ( L o g 2 N ) P π / 2 + s × P R
F O V = 2 s i n 1 ( λ 2 d )
s i n 2 ( π N d λ θ ) ( π N d λ θ ) 2
Δ θ 2.78 π λ N d
F O V Δ θ 1.13 N

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved