H. Uchida, M. Adachi, T. Egawa, H. Nishikawa, T. Jimbo, and M. Umeno, “High quality GaAs on Si grown by CBE,” Icds-18 - Proceedings of the 18th International Conference on Defects in Semiconductors, Pts 1-4 196, 535–538 (1995).
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 27(3), 2681–2688 (2019).
[Crossref]
K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref]
K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 mu m room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
[Crossref]
M. Bruel, B. Aspar, and A. J. AubertonHerve, “Smart-cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding,” Jpn. J. Appl. Phys. 36(Part 1, No. 3B), 1636–1641 (1997).
[Crossref]
M. Bruel, B. Aspar, and A. J. AubertonHerve, “Smart-cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding,” Jpn. J. Appl. Phys. 36(Part 1, No. 3B), 1636–1641 (1997).
[Crossref]
Y. Bai, G. D. Cole, M. T. Bulsara, and E. A. Fitzgerald, “Fabrication of GaAs-on-Insulator via Low Temperature Wafer Bonding and Sacrificial Etching of Ge by XeF2,” J. Electrochem. Soc. 159(2), H183–H190 (2011).
[Crossref]
P. E. Raynal, M. Rebaud, V. Loup, L. Vallier, M. C. Roure, M. Martin, J. P. Barnes, and P. Besson, “GaAs WET and Siconi Cleaning Sequences for an Efficient Oxide Removal,” ECS J. Solid State Sci. Technol. 8(2), P106–P111 (2019).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
M. C. Tang, J. Wu, S. M. Chen, Q. Jiang, A. J. Seeds, H. Y. Liu, V. G. Dorogan, M. Benamara, Y. Mazur, and G. Salamo, “Optimisation of the dislocation filter layers in 1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IET Optoelectron. 9(2), 61–64 (2015).
[Crossref]
M. C. Tang, S. M. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Y. Liu, “1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref]
K. Maehashi, H. Nakashima, F. Bertram, P. Veit, and J. Christen, “Molecular beam epitaxial growth and characterization of GaAs films on thin Si substrates,” Jpn. J. Appl. Phys. 37(Part 1, No. 1), 39–44 (1998).
[Crossref]
P. E. Raynal, M. Rebaud, V. Loup, L. Vallier, M. C. Roure, M. Martin, J. P. Barnes, and P. Besson, “GaAs WET and Siconi Cleaning Sequences for an Efficient Oxide Removal,” ECS J. Solid State Sci. Technol. 8(2), P106–P111 (2019).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
A. Y. Liu and J. Bowers, “Photonic Integration With Epitaxial III-V on Silicon,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
[Crossref]
D. Jung, J. Norman, Y. T. Wan, S. T. Liu, R. Herrick, J. Selvidge, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy,” Phys. Status Solidi A 216(1), 1800602 (2019).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
Y. T. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]
Q. Li, Y. T. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-mu m InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24(18), 21038–21045 (2016).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]
M. Bruel, B. Aspar, and A. J. AubertonHerve, “Smart-cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding,” Jpn. J. Appl. Phys. 36(Part 1, No. 3B), 1636–1641 (1997).
[Crossref]
Y. Bai, G. D. Cole, M. T. Bulsara, and E. A. Fitzgerald, “Fabrication of GaAs-on-Insulator via Low Temperature Wafer Bonding and Sacrificial Etching of Ge by XeF2,” J. Electrochem. Soc. 159(2), H183–H190 (2011).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate,” J. Semicond. 40(10), 101302 (2019).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
Y. H. Wang, W. C. Liu, S. A. Liao, K. Y. Cheng, and C. Y. Chang, “ON THE SURFACE-DEFECTS OF MBE-GROWN GAAS-LAYERS,” Jpn. J. Appl. Phys. 24(Part 1, No. 5), 628–629 (1985).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
Z. P. Zhou, R. X. Chen, X. B. Li, and T. T. Li, “Development trends in silicon photonics for data centers,” Opt. Fiber Technol. 44, 13–23 (2018).
[Crossref]
S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate,” J. Semicond. 40(10), 101302 (2019).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
M. C. Tang, J. Wu, S. M. Chen, Q. Jiang, A. J. Seeds, H. Y. Liu, V. G. Dorogan, M. Benamara, Y. Mazur, and G. Salamo, “Optimisation of the dislocation filter layers in 1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IET Optoelectron. 9(2), 61–64 (2015).
[Crossref]
M. C. Tang, S. M. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Y. Liu, “1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref]
Y. H. Wang, W. C. Liu, S. A. Liao, K. Y. Cheng, and C. Y. Chang, “ON THE SURFACE-DEFECTS OF MBE-GROWN GAAS-LAYERS,” Jpn. J. Appl. Phys. 24(Part 1, No. 5), 628–629 (1985).
[Crossref]
K. Maehashi, H. Nakashima, F. Bertram, P. Veit, and J. Christen, “Molecular beam epitaxial growth and characterization of GaAs films on thin Si substrates,” Jpn. J. Appl. Phys. 37(Part 1, No. 1), 39–44 (1998).
[Crossref]
Y. Bai, G. D. Cole, M. T. Bulsara, and E. A. Fitzgerald, “Fabrication of GaAs-on-Insulator via Low Temperature Wafer Bonding and Sacrificial Etching of Ge by XeF2,” J. Electrochem. Soc. 159(2), H183–H190 (2011).
[Crossref]
W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 mu m InAs quantum-dot microdisk lasers on metamorphic nGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 mu m room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
M. Webb, C. Jeynes, R. Gwilliam, P. Too, A. Kozanecki, J. Domagala, A. Royle, and B. Sealy, “The influence of the ion implantation temperature and the dose rate on smart-cut (c) in GaAs,” Nucl. Instrum. Methods Phys. Res., Sect. B 240(1-2), 142–145 (2005).
[Crossref]
M. C. Tang, J. Wu, S. M. Chen, Q. Jiang, A. J. Seeds, H. Y. Liu, V. G. Dorogan, M. Benamara, Y. Mazur, and G. Salamo, “Optimisation of the dislocation filter layers in 1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IET Optoelectron. 9(2), 61–64 (2015).
[Crossref]
M. C. Tang, S. M. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Y. Liu, “1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
H. Uchida, M. Adachi, T. Egawa, H. Nishikawa, T. Jimbo, and M. Umeno, “High quality GaAs on Si grown by CBE,” Icds-18 - Proceedings of the 18th International Conference on Defects in Semiconductors, Pts 1-4 196, 535–538 (1995).
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
W. Q. Wei, Q. Feng, J. J. Guo, M. C. Guo, J. H. Wang, Z. H. Wang, T. Wang, and J. J. Zhang, “InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration,” Opt. Express 28(18), 26555–26563 (2020).
[Crossref]
Y. Bai, G. D. Cole, M. T. Bulsara, and E. A. Fitzgerald, “Fabrication of GaAs-on-Insulator via Low Temperature Wafer Bonding and Sacrificial Etching of Ge by XeF2,” J. Electrochem. Soc. 159(2), H183–H190 (2011).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
K. Wieteska, W. Wierzchowski, W. Graeff, and G. Gawlik, “X-ray synchrotron diffraction studies of III-V semiconductor compounds implanted with hydrogen,” phys. stat. sol. (a) 203(2), 227–235 (2006).
[Crossref]
K. Gutjahr, M. Reiche, and U. Gosele, “Contamination and cleaning of GaAs-(100) surfaces,” Icds-18 - Proceedings of the 18th International Conference on Defects in Semiconductors, Pts 1-4 196, 1967–1971 (1995).
D. Jung, J. Norman, Y. T. Wan, S. T. Liu, R. Herrick, J. Selvidge, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy,” Phys. Status Solidi A 216(1), 1800602 (2019).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
Y. T. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
Q. Li, Y. T. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-mu m InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24(18), 21038–21045 (2016).
[Crossref]
K. Wieteska, W. Wierzchowski, W. Graeff, and G. Gawlik, “X-ray synchrotron diffraction studies of III-V semiconductor compounds implanted with hydrogen,” phys. stat. sol. (a) 203(2), 227–235 (2006).
[Crossref]
W. Q. Wei, Q. Feng, J. J. Guo, M. C. Guo, J. H. Wang, Z. H. Wang, T. Wang, and J. J. Zhang, “InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration,” Opt. Express 28(18), 26555–26563 (2020).
[Crossref]
W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 mu m InAs quantum-dot microdisk lasers on metamorphic nGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]
W. Q. Wei, Q. Feng, J. J. Guo, M. C. Guo, J. H. Wang, Z. H. Wang, T. Wang, and J. J. Zhang, “InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration,” Opt. Express 28(18), 26555–26563 (2020).
[Crossref]
K. Gutjahr, M. Reiche, and U. Gosele, “Contamination and cleaning of GaAs-(100) surfaces,” Icds-18 - Proceedings of the 18th International Conference on Defects in Semiconductors, Pts 1-4 196, 1967–1971 (1995).
M. Webb, C. Jeynes, R. Gwilliam, P. Too, A. Kozanecki, J. Domagala, A. Royle, and B. Sealy, “The influence of the ion implantation temperature and the dose rate on smart-cut (c) in GaAs,” Nucl. Instrum. Methods Phys. Res., Sect. B 240(1-2), 142–145 (2005).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
N. Hayafuji, S. Ochi, M. Miyashita, M. Tsugami, T. Murotani, and A. Kawagishi, “EFFECTIVENESS OF ALGAAS/GAAS SUPERLATTICES IN REDUCING DISLOCATION DENSITY IN GAAS ON SI,” J. Cryst. Growth 93(1-4), 494–498 (1988).
[Crossref]
D. Jung, J. Norman, Y. T. Wan, S. T. Liu, R. Herrick, J. Selvidge, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy,” Phys. Status Solidi A 216(1), 1800602 (2019).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
Q. Li, Y. T. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-mu m InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24(18), 21038–21045 (2016).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 mu m room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
M. Webb, C. Jeynes, R. Gwilliam, P. Too, A. Kozanecki, J. Domagala, A. Royle, and B. Sealy, “The influence of the ion implantation temperature and the dose rate on smart-cut (c) in GaAs,” Nucl. Instrum. Methods Phys. Res., Sect. B 240(1-2), 142–145 (2005).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
M. C. Tang, J. Wu, S. M. Chen, Q. Jiang, A. J. Seeds, H. Y. Liu, V. G. Dorogan, M. Benamara, Y. Mazur, and G. Salamo, “Optimisation of the dislocation filter layers in 1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IET Optoelectron. 9(2), 61–64 (2015).
[Crossref]
J. Wu, A. Lee, Q. Jiang, M. C. Tang, A. J. Seeds, and H. Y. Liu, “Electrically pumped continuous-wave 1.3-mu m InAs/GaAs quantum dot lasers monolithically grown on Si substrates,” IET Optoelectron. 8(2), 20–24 (2014).
[Crossref]
M. C. Tang, S. M. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Y. Liu, “1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref]
A. D. Lee, Q. Jiang, M. C. Tang, Y. Y. Zhang, A. J. Seeds, and H. Y. Liu, “InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]
A. Lee, Q. Jiang, M. C. Tang, A. Seeds, and H. Y. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref]
H. Uchida, M. Adachi, T. Egawa, H. Nishikawa, T. Jimbo, and M. Umeno, “High quality GaAs on Si grown by CBE,” Icds-18 - Proceedings of the 18th International Conference on Defects in Semiconductors, Pts 1-4 196, 535–538 (1995).
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
D. Jung, J. Norman, Y. T. Wan, S. T. Liu, R. Herrick, J. Selvidge, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy,” Phys. Status Solidi A 216(1), 1800602 (2019).
[Crossref]
Y. T. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
N. Hayafuji, S. Ochi, M. Miyashita, M. Tsugami, T. Murotani, and A. Kawagishi, “EFFECTIVENESS OF ALGAAS/GAAS SUPERLATTICES IN REDUCING DISLOCATION DENSITY IN GAAS ON SI,” J. Cryst. Growth 93(1-4), 494–498 (1988).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
Y. T. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
M. Webb, C. Jeynes, R. Gwilliam, P. Too, A. Kozanecki, J. Domagala, A. Royle, and B. Sealy, “The influence of the ion implantation temperature and the dose rate on smart-cut (c) in GaAs,” Nucl. Instrum. Methods Phys. Res., Sect. B 240(1-2), 142–145 (2005).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
Y. T. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]
Q. Li, Y. T. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-mu m InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24(18), 21038–21045 (2016).
[Crossref]
J. Wu, A. Lee, Q. Jiang, M. C. Tang, A. J. Seeds, and H. Y. Liu, “Electrically pumped continuous-wave 1.3-mu m InAs/GaAs quantum dot lasers monolithically grown on Si substrates,” IET Optoelectron. 8(2), 20–24 (2014).
[Crossref]
A. Lee, Q. Jiang, M. C. Tang, A. Seeds, and H. Y. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref]
A. D. Lee, Q. Jiang, M. C. Tang, Y. Y. Zhang, A. J. Seeds, and H. Y. Liu, “InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
Y. T. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
Q. Li, Y. T. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-mu m InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24(18), 21038–21045 (2016).
[Crossref]
Z. P. Zhou, R. X. Chen, X. B. Li, and T. T. Li, “Development trends in silicon photonics for data centers,” Opt. Fiber Technol. 44, 13–23 (2018).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
Z. P. Zhou, R. X. Chen, X. B. Li, and T. T. Li, “Development trends in silicon photonics for data centers,” Opt. Fiber Technol. 44, 13–23 (2018).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate,” J. Semicond. 40(10), 101302 (2019).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
Y. H. Wang, W. C. Liu, S. A. Liao, K. Y. Cheng, and C. Y. Chang, “ON THE SURFACE-DEFECTS OF MBE-GROWN GAAS-LAYERS,” Jpn. J. Appl. Phys. 24(Part 1, No. 5), 628–629 (1985).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
A. Y. Liu and J. Bowers, “Photonic Integration With Epitaxial III-V on Silicon,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–12 (2018).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
Q. Li, Y. T. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-mu m InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24(18), 21038–21045 (2016).
[Crossref]
S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate,” J. Semicond. 40(10), 101302 (2019).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
M. C. Tang, J. Wu, S. M. Chen, Q. Jiang, A. J. Seeds, H. Y. Liu, V. G. Dorogan, M. Benamara, Y. Mazur, and G. Salamo, “Optimisation of the dislocation filter layers in 1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IET Optoelectron. 9(2), 61–64 (2015).
[Crossref]
J. Wu, A. Lee, Q. Jiang, M. C. Tang, A. J. Seeds, and H. Y. Liu, “Electrically pumped continuous-wave 1.3-mu m InAs/GaAs quantum dot lasers monolithically grown on Si substrates,” IET Optoelectron. 8(2), 20–24 (2014).
[Crossref]
M. C. Tang, S. M. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Y. Liu, “1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref]
A. D. Lee, Q. Jiang, M. C. Tang, Y. Y. Zhang, A. J. Seeds, and H. Y. Liu, “InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]
A. Lee, Q. Jiang, M. C. Tang, A. Seeds, and H. Y. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref]
X. Wang and J. Liu, “Emerging technologies in Si active photonics,” J. Semicond. 39(6), 061001 (2018).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
D. Jung, J. Norman, Y. T. Wan, S. T. Liu, R. Herrick, J. Selvidge, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy,” Phys. Status Solidi A 216(1), 1800602 (2019).
[Crossref]
Y. H. Wang, W. C. Liu, S. A. Liao, K. Y. Cheng, and C. Y. Chang, “ON THE SURFACE-DEFECTS OF MBE-GROWN GAAS-LAYERS,” Jpn. J. Appl. Phys. 24(Part 1, No. 5), 628–629 (1985).
[Crossref]
S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate,” J. Semicond. 40(10), 101302 (2019).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
P. E. Raynal, M. Rebaud, V. Loup, L. Vallier, M. C. Roure, M. Martin, J. P. Barnes, and P. Besson, “GaAs WET and Siconi Cleaning Sequences for an Efficient Oxide Removal,” ECS J. Solid State Sci. Technol. 8(2), P106–P111 (2019).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate,” J. Semicond. 40(10), 101302 (2019).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
Y. T. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]
K. Maehashi, H. Nakashima, F. Bertram, P. Veit, and J. Christen, “Molecular beam epitaxial growth and characterization of GaAs films on thin Si substrates,” Jpn. J. Appl. Phys. 37(Part 1, No. 1), 39–44 (1998).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
P. E. Raynal, M. Rebaud, V. Loup, L. Vallier, M. C. Roure, M. Martin, J. P. Barnes, and P. Besson, “GaAs WET and Siconi Cleaning Sequences for an Efficient Oxide Removal,” ECS J. Solid State Sci. Technol. 8(2), P106–P111 (2019).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
M. C. Tang, J. Wu, S. M. Chen, Q. Jiang, A. J. Seeds, H. Y. Liu, V. G. Dorogan, M. Benamara, Y. Mazur, and G. Salamo, “Optimisation of the dislocation filter layers in 1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IET Optoelectron. 9(2), 61–64 (2015).
[Crossref]
M. C. Tang, S. M. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Y. Liu, “1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]
N. Hayafuji, S. Ochi, M. Miyashita, M. Tsugami, T. Murotani, and A. Kawagishi, “EFFECTIVENESS OF ALGAAS/GAAS SUPERLATTICES IN REDUCING DISLOCATION DENSITY IN GAAS ON SI,” J. Cryst. Growth 93(1-4), 494–498 (1988).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
D. Jung, J. Norman, Y. T. Wan, S. T. Liu, R. Herrick, J. Selvidge, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy,” Phys. Status Solidi A 216(1), 1800602 (2019).
[Crossref]
N. Hayafuji, S. Ochi, M. Miyashita, M. Tsugami, T. Murotani, and A. Kawagishi, “EFFECTIVENESS OF ALGAAS/GAAS SUPERLATTICES IN REDUCING DISLOCATION DENSITY IN GAAS ON SI,” J. Cryst. Growth 93(1-4), 494–498 (1988).
[Crossref]
K. Maehashi, H. Nakashima, F. Bertram, P. Veit, and J. Christen, “Molecular beam epitaxial growth and characterization of GaAs films on thin Si substrates,” Jpn. J. Appl. Phys. 37(Part 1, No. 1), 39–44 (1998).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
H. Uchida, M. Adachi, T. Egawa, H. Nishikawa, T. Jimbo, and M. Umeno, “High quality GaAs on Si grown by CBE,” Icds-18 - Proceedings of the 18th International Conference on Defects in Semiconductors, Pts 1-4 196, 535–538 (1995).
D. Jung, J. Norman, Y. T. Wan, S. T. Liu, R. Herrick, J. Selvidge, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy,” Phys. Status Solidi A 216(1), 1800602 (2019).
[Crossref]
Y. T. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
N. Hayafuji, S. Ochi, M. Miyashita, M. Tsugami, T. Murotani, and A. Kawagishi, “EFFECTIVENESS OF ALGAAS/GAAS SUPERLATTICES IN REDUCING DISLOCATION DENSITY IN GAAS ON SI,” J. Cryst. Growth 93(1-4), 494–498 (1988).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate,” J. Semicond. 40(10), 101302 (2019).
[Crossref]
D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 mu m room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
P. E. Raynal, M. Rebaud, V. Loup, L. Vallier, M. C. Roure, M. Martin, J. P. Barnes, and P. Besson, “GaAs WET and Siconi Cleaning Sequences for an Efficient Oxide Removal,” ECS J. Solid State Sci. Technol. 8(2), P106–P111 (2019).
[Crossref]
P. E. Raynal, M. Rebaud, V. Loup, L. Vallier, M. C. Roure, M. Martin, J. P. Barnes, and P. Besson, “GaAs WET and Siconi Cleaning Sequences for an Efficient Oxide Removal,” ECS J. Solid State Sci. Technol. 8(2), P106–P111 (2019).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
K. Gutjahr, M. Reiche, and U. Gosele, “Contamination and cleaning of GaAs-(100) surfaces,” Icds-18 - Proceedings of the 18th International Conference on Defects in Semiconductors, Pts 1-4 196, 1967–1971 (1995).
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
P. E. Raynal, M. Rebaud, V. Loup, L. Vallier, M. C. Roure, M. Martin, J. P. Barnes, and P. Besson, “GaAs WET and Siconi Cleaning Sequences for an Efficient Oxide Removal,” ECS J. Solid State Sci. Technol. 8(2), P106–P111 (2019).
[Crossref]
M. Webb, C. Jeynes, R. Gwilliam, P. Too, A. Kozanecki, J. Domagala, A. Royle, and B. Sealy, “The influence of the ion implantation temperature and the dose rate on smart-cut (c) in GaAs,” Nucl. Instrum. Methods Phys. Res., Sect. B 240(1-2), 142–145 (2005).
[Crossref]
M. C. Tang, J. Wu, S. M. Chen, Q. Jiang, A. J. Seeds, H. Y. Liu, V. G. Dorogan, M. Benamara, Y. Mazur, and G. Salamo, “Optimisation of the dislocation filter layers in 1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IET Optoelectron. 9(2), 61–64 (2015).
[Crossref]
M. C. Tang, S. M. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Y. Liu, “1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
M. Webb, C. Jeynes, R. Gwilliam, P. Too, A. Kozanecki, J. Domagala, A. Royle, and B. Sealy, “The influence of the ion implantation temperature and the dose rate on smart-cut (c) in GaAs,” Nucl. Instrum. Methods Phys. Res., Sect. B 240(1-2), 142–145 (2005).
[Crossref]
S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate,” J. Semicond. 40(10), 101302 (2019).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
M. C. Tang, S. M. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Y. Liu, “1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref]
A. Lee, Q. Jiang, M. C. Tang, A. Seeds, and H. Y. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
M. C. Tang, J. Wu, S. M. Chen, Q. Jiang, A. J. Seeds, H. Y. Liu, V. G. Dorogan, M. Benamara, Y. Mazur, and G. Salamo, “Optimisation of the dislocation filter layers in 1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IET Optoelectron. 9(2), 61–64 (2015).
[Crossref]
J. Wu, A. Lee, Q. Jiang, M. C. Tang, A. J. Seeds, and H. Y. Liu, “Electrically pumped continuous-wave 1.3-mu m InAs/GaAs quantum dot lasers monolithically grown on Si substrates,” IET Optoelectron. 8(2), 20–24 (2014).
[Crossref]
A. D. Lee, Q. Jiang, M. C. Tang, Y. Y. Zhang, A. J. Seeds, and H. Y. Liu, “InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]
D. Jung, J. Norman, Y. T. Wan, S. T. Liu, R. Herrick, J. Selvidge, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy,” Phys. Status Solidi A 216(1), 1800602 (2019).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
Y. T. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]
D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 mu m room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]
K. Sumita, J. Takeyasu, K. Toprasertpong, M. Takenaka, and S. Takagi, “Influence of layer transfer and thermal annealing on the properties of InAs-On-Insulator films,” J. Appl. Phys. 128(1), 015705 (2020).
[Crossref]
K. Sumita, J. Takeyasu, K. Toprasertpong, M. Takenaka, and S. Takagi, “Influence of layer transfer and thermal annealing on the properties of InAs-On-Insulator films,” J. Appl. Phys. 128(1), 015705 (2020).
[Crossref]
K. Sumita, J. Takeyasu, K. Toprasertpong, M. Takenaka, and S. Takagi, “Influence of layer transfer and thermal annealing on the properties of InAs-On-Insulator films,” J. Appl. Phys. 128(1), 015705 (2020).
[Crossref]
K. Sumita, J. Takeyasu, K. Toprasertpong, M. Takenaka, and S. Takagi, “Influence of layer transfer and thermal annealing on the properties of InAs-On-Insulator films,” J. Appl. Phys. 128(1), 015705 (2020).
[Crossref]
K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref]
K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 mu m room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
[Crossref]
S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate,” J. Semicond. 40(10), 101302 (2019).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
M. C. Tang, J. Wu, S. M. Chen, Q. Jiang, A. J. Seeds, H. Y. Liu, V. G. Dorogan, M. Benamara, Y. Mazur, and G. Salamo, “Optimisation of the dislocation filter layers in 1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IET Optoelectron. 9(2), 61–64 (2015).
[Crossref]
J. Wu, A. Lee, Q. Jiang, M. C. Tang, A. J. Seeds, and H. Y. Liu, “Electrically pumped continuous-wave 1.3-mu m InAs/GaAs quantum dot lasers monolithically grown on Si substrates,” IET Optoelectron. 8(2), 20–24 (2014).
[Crossref]
M. C. Tang, S. M. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Y. Liu, “1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref]
A. D. Lee, Q. Jiang, M. C. Tang, Y. Y. Zhang, A. J. Seeds, and H. Y. Liu, “InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]
A. Lee, Q. Jiang, M. C. Tang, A. Seeds, and H. Y. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
M. Webb, C. Jeynes, R. Gwilliam, P. Too, A. Kozanecki, J. Domagala, A. Royle, and B. Sealy, “The influence of the ion implantation temperature and the dose rate on smart-cut (c) in GaAs,” Nucl. Instrum. Methods Phys. Res., Sect. B 240(1-2), 142–145 (2005).
[Crossref]
K. Sumita, J. Takeyasu, K. Toprasertpong, M. Takenaka, and S. Takagi, “Influence of layer transfer and thermal annealing on the properties of InAs-On-Insulator films,” J. Appl. Phys. 128(1), 015705 (2020).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
N. Hayafuji, S. Ochi, M. Miyashita, M. Tsugami, T. Murotani, and A. Kawagishi, “EFFECTIVENESS OF ALGAAS/GAAS SUPERLATTICES IN REDUCING DISLOCATION DENSITY IN GAAS ON SI,” J. Cryst. Growth 93(1-4), 494–498 (1988).
[Crossref]
H. Uchida, M. Adachi, T. Egawa, H. Nishikawa, T. Jimbo, and M. Umeno, “High quality GaAs on Si grown by CBE,” Icds-18 - Proceedings of the 18th International Conference on Defects in Semiconductors, Pts 1-4 196, 535–538 (1995).
H. Uchida, M. Adachi, T. Egawa, H. Nishikawa, T. Jimbo, and M. Umeno, “High quality GaAs on Si grown by CBE,” Icds-18 - Proceedings of the 18th International Conference on Defects in Semiconductors, Pts 1-4 196, 535–538 (1995).
P. E. Raynal, M. Rebaud, V. Loup, L. Vallier, M. C. Roure, M. Martin, J. P. Barnes, and P. Besson, “GaAs WET and Siconi Cleaning Sequences for an Efficient Oxide Removal,” ECS J. Solid State Sci. Technol. 8(2), P106–P111 (2019).
[Crossref]
K. Maehashi, H. Nakashima, F. Bertram, P. Veit, and J. Christen, “Molecular beam epitaxial growth and characterization of GaAs films on thin Si substrates,” Jpn. J. Appl. Phys. 37(Part 1, No. 1), 39–44 (1998).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
D. Jung, J. Norman, Y. T. Wan, S. T. Liu, R. Herrick, J. Selvidge, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy,” Phys. Status Solidi A 216(1), 1800602 (2019).
[Crossref]
Y. T. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref]
J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. T. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
Q. Li, Y. T. Wan, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “1.3-mu m InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 24(18), 21038–21045 (2016).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
W. Q. Wei, Q. Feng, J. J. Guo, M. C. Guo, J. H. Wang, Z. H. Wang, T. Wang, and J. J. Zhang, “InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration,” Opt. Express 28(18), 26555–26563 (2020).
[Crossref]
W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 mu m InAs quantum-dot microdisk lasers on metamorphic nGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 mu m InAs quantum-dot microdisk lasers on metamorphic nGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]
W. Q. Wei, Q. Feng, J. J. Guo, M. C. Guo, J. H. Wang, Z. H. Wang, T. Wang, and J. J. Zhang, “InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration,” Opt. Express 28(18), 26555–26563 (2020).
[Crossref]
X. Wang and J. Liu, “Emerging technologies in Si active photonics,” J. Semicond. 39(6), 061001 (2018).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
Y. H. Wang, W. C. Liu, S. A. Liao, K. Y. Cheng, and C. Y. Chang, “ON THE SURFACE-DEFECTS OF MBE-GROWN GAAS-LAYERS,” Jpn. J. Appl. Phys. 24(Part 1, No. 5), 628–629 (1985).
[Crossref]
W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 mu m InAs quantum-dot microdisk lasers on metamorphic nGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]
W. Q. Wei, Q. Feng, J. J. Guo, M. C. Guo, J. H. Wang, Z. H. Wang, T. Wang, and J. J. Zhang, “InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration,” Opt. Express 28(18), 26555–26563 (2020).
[Crossref]
J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 27(3), 2681–2688 (2019).
[Crossref]
K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref]
M. Webb, C. Jeynes, R. Gwilliam, P. Too, A. Kozanecki, J. Domagala, A. Royle, and B. Sealy, “The influence of the ion implantation temperature and the dose rate on smart-cut (c) in GaAs,” Nucl. Instrum. Methods Phys. Res., Sect. B 240(1-2), 142–145 (2005).
[Crossref]
W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 mu m InAs quantum-dot microdisk lasers on metamorphic nGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]
W. Q. Wei, Q. Feng, J. J. Guo, M. C. Guo, J. H. Wang, Z. H. Wang, T. Wang, and J. J. Zhang, “InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration,” Opt. Express 28(18), 26555–26563 (2020).
[Crossref]
K. Wieteska, W. Wierzchowski, W. Graeff, and G. Gawlik, “X-ray synchrotron diffraction studies of III-V semiconductor compounds implanted with hydrogen,” phys. stat. sol. (a) 203(2), 227–235 (2006).
[Crossref]
K. Wieteska, W. Wierzchowski, W. Graeff, and G. Gawlik, “X-ray synchrotron diffraction studies of III-V semiconductor compounds implanted with hydrogen,” phys. stat. sol. (a) 203(2), 227–235 (2006).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
M. Y. Liao, S. M. Chen, S. G. Huo, S. Chen, J. Wu, M. C. Tang, K. Kennedy, W. Li, S. Kumar, M. Martin, T. Baron, C. Y. Jin, I. Ross, A. Seeds, and H. Y. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1–10 (2017).
[Crossref]
M. C. Tang, J. Wu, S. M. Chen, Q. Jiang, A. J. Seeds, H. Y. Liu, V. G. Dorogan, M. Benamara, Y. Mazur, and G. Salamo, “Optimisation of the dislocation filter layers in 1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IET Optoelectron. 9(2), 61–64 (2015).
[Crossref]
J. Wu, A. Lee, Q. Jiang, M. C. Tang, A. J. Seeds, and H. Y. Liu, “Electrically pumped continuous-wave 1.3-mu m InAs/GaAs quantum dot lasers monolithically grown on Si substrates,” IET Optoelectron. 8(2), 20–24 (2014).
[Crossref]
M. C. Tang, S. M. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Y. Liu, “1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 mu m InAs quantum-dot microdisk lasers on metamorphic nGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 mu m InAs quantum-dot microdisk lasers on metamorphic nGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]
W. Q. Wei, Q. Feng, J. J. Guo, M. C. Guo, J. H. Wang, Z. H. Wang, T. Wang, and J. J. Zhang, “InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration,” Opt. Express 28(18), 26555–26563 (2020).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 mu m InAs quantum-dot microdisk lasers on metamorphic nGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
A. D. Lee, Q. Jiang, M. C. Tang, Y. Y. Zhang, A. J. Seeds, and H. Y. Liu, “InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]
Y. T. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. N. Huang, Z. Y. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 mu m submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
Y. Wang, S. M. Chen, Y. Yu, L. D. Zhou, L. Liu, C. C. Yang, M. Y. Liao, M. C. Tang, Z. Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Y. Liu, and S. Y. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5(5), 528–533 (2018).
[Crossref]
J. J. Lin, T. G. You, T. T. Jin, H. Liang, W. J. Wan, H. Huang, M. Zhou, F. W. Mu, Y. Q. Yan, K. Huang, X. M. Zhao, J. X. Zhang, S. M. Wang, P. Gao, and X. Ou, “Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface,” APL Mater. 8(5), 051110 (2020).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
J. J. Lin, T. G. You, M. Wang, K. Huang, S. B. Zhang, Q. Jia, M. Zhou, W. J. Yu, S. Q. Zhou, X. Wang, and X. Ou, “Efficient ion-slicing of InP thin film for Si-based hetero-integration,” Nanotechnology 29(50), 504002 (2018).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
Z. P. Zhou, R. X. Chen, X. B. Li, and T. T. Li, “Development trends in silicon photonics for data centers,” Opt. Fiber Technol. 44, 13–23 (2018).
[Crossref]
D. C. Wang, C. Zhang, P. Zeng, W. J. Zhou, L. Maa, H. T. Wang, Z. Q. Zhou, F. Hu, S. Y. Zhang, M. Lu, and X. Wu, “An all-silicon laser based on silicon nanocrystals with high optical gains,” Sci. Bull. 63(2), 75–77 (2018).
[Crossref]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fedeli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]
D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 mu m room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]
A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J. E. Michaud, A. M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut (TM) technology,” Electron. Lett. 41(11), 668–670 (2005).
[Crossref]