Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses

Open Access Open Access

Abstract

In this article, the chalcogenide slot waveguide is theoretically studied, and the highest power confinement factors of the slot region and the cladding region are obtained to be 36.3% and 56.7%, respectively. A high-sensitivity chalcogenide slot microring resonator sensor is designed and fabricated by electron-beam lithography and dry etching. The structure increases the sensitivity of the sensor compared with the conventional evanescent field waveguide sensor. The cavity has achieved a quality factor of 1 × 104 by fitting the resonant peaks with the Lorentzian profile, one of the highest quality factors reported for chalcogenide slot microring resonators. The sensor sensitivity is measured to be 471 nm/RIU, which leads to an intrinsic limit of detection of 3.3 × 10­−4 RIU.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Chalcogenide glasses (ChGs), which contain one or more group VI elements of S, Se, and Te with other low-electronegativity elements, such as As, Sb, Ge, or Ga [13], have been proven to be high-performance optical materials for integrated photonic applications. The optical characteristics of ChGs are reflected in the wide transparency window extending from the visible to the far-infrared, high linear refractive indices, high Kerr nonlinearity, low two-photon absorption, and flexible structures [47]. Based on these merits, ChGs have been extensively applied in optical storages [8], optical amplifiers [9], optical sensors [10], and lasers [11].

Over the past few decades, optical sensor devices based on different materials, such as group IV materials, metal materials, and semiconductor materials, have been reported [1215]. Versatile structures, including microring resonators [16], photonic crystals [17], Mach-Zehnder interferometers [18], and Bragg gratings [19], have been proposed and investigated. On-chip microring resonators, a type of representative photonic structure providing high sensitivity, compact size, and label-free properties, have been extended to different sensing areas, such as biosensors [20,21], chemical sensors [22], temperature and humidity sensors [23,24], and pressure sensors [25]. Furthermore, the on-chip microring resonator is compatible with complementary metal-oxide-semiconductor, and it could be easily manufactured [2628]. However, conventional strip waveguide microring resonators confine the effective mode in the higher index waveguide core layer, and only weak evanescent field interacts with the outside lower index cladding, thus limiting the sensitivity of devices. Slot waveguide microring resonators, which confine the effective mode in the low index slot region [29], could increase the interaction between the effective mode and the analyte. To date, slot microring resonators have been widely investigated in silicon-based platforms [3032], but slot microring resonators based on ChGs have been rarely reported [33].

In this work, a ChG slot (ChGS) microring resonator is presented, and Ge28Sb12Se60 (GeSbSe) film (n = 2.72@1550 nm) is used as the core layer of the slot microring resonator. The structure parameters of the ChGS microring resonators are investigated, the power confinement factor (PCF) is optimized, and the bend slot waveguide is optimized to improve the sensitivity. 30 kV electron beam lithography (EBL) followed by a dry etching process is applied to fabricate ChGS microring resonators. A high-quality factor (Q-factor) resonator is obtained, based on which a refractive index (RI) sensor is proposed and demonstrated. And the sensitivity and limit of detection (LOD) are also analyzed by different concentrations of NaCl solutions.

2. Design and optimization of ChGS waveguide

2.1 PCF of ChGS waveguide

The ChGS waveguide was prepared on a silicon substrate with a 2 µm-thick buried SiO2 layer. The proposed ChGS waveguide schematic is shown in Fig. 1(a), where the red line indicates the slot region, and the green line indicates the cladding region (including the slot region). The ChGS waveguide has a slot width of Wslot= 50 nm, rail width of Wrail= 340 nm, and height of Hrail = 300 nm. PCF is an important parameter described by the optical field confinement, which quantitatively indicates that the guided modal field is confined in a specific region. The PCF of the slot region (ΓS) and cladding region (ΓC) could be calculated in Mode Solution using the following equations:

$${\Gamma _\textrm{S}}\textrm{ = }\frac{{{{\int\!\!\!\int\limits_\textrm{S} {|{E(x,y)} |} }^2}dxdy}}{{{{\int\!\!\!\int\limits_\infty {|{E(x,y)} |} }^2}dxdy}}$$
$${\Gamma _C}\textrm{ = }\frac{{{{\int\!\!\!\int\limits_C {|{E(x,y)} |} }^2}dxdy}}{{{{\int\!\!\!\int\limits_\infty {|{E(x,y)} |} }^2}dxdy}}$$
where E(x, y) is the electric field vector, and C and S indicate the cladding and slot regions, respectively [34]. According to the simulation results, Wrail has its greatest impact on PCF.

 figure: Fig. 1.

Fig. 1. (a) Cross-section views of the designed ChGS waveguide. (b) PCF of the slot region and cladding region as a function of Wrail.

Download Full Size | PPT Slide | PDF

Wrail were varied to validate the robustness of the designed structure by calculating PCF changes. When Wrail was set from 270 nm to 450 nm, homologous variation tendency of PCF in the slot region and the cladding region was obtained, as shown in Fig. 1(b). The best PCF was exhibited when Wrail was 340 nm. As Wrail continued to increase, the PCF decreased. The maximum values of PCF were ΓC = 55.9% and ΓS = 36.3%.

2.2 Parameters and single-mode condition of ChGS waveguide

The amplitude profile of the E-field is shown in the 3D surface plot shown in Fig. 2(a). The RIs for the GeSbSe core layer (nrail) and SiO2 buried layer (nSiO2) were 2.72 and 1.44, separately. Both sides of the high-index GeSbSe rails confined the light in the low-index air region, thus enhancing the interaction between the light and the analyte to be detected, which leads to increased sensitivity.

 figure: Fig. 2.

Fig. 2. (a) 3D surface plot of the E-field amplitude. (b) Simulation results of the effective index as a function of Wrail. The slot waveguide is covered with air. Only the modes above the horizontal dashed lines are guided.

Download Full Size | PPT Slide | PDF

The effective RI (neff) changes were determined when Wrail varied from 300 nm to 800 nm. The neff and single-mode conditions at the wavelength of 1550 nm are shown in Fig. 2(b). The modes with effective index greater than nSiO2 above the horizontal dashed line were guided. The vertical dashed line indicates the single mode cutoff width, which is the minimum width in which a slot waveguide will only allow TE0 and TM0 to propagate. If Wrail is over this width, higher order modes, i.e., TE1, TM1, etc. will be able to propagate.

3. Design and fabrication of ChGS microring resonators

3.1 Design of ChGS microring resonators

Figure 3(a) shows the designed structure of the ChGS microring resonator. The resonator contains a GeSbSe strip bus waveguide acting as input and output ports and a GeSbSe slot microring acting as the resonator, in which W_outrail is the width of the outer ring, and W_inrail is the width of the inner ring. Figures 3(b) and 3(c) show the electric field distribution with different rail parameters. In Fig. 3(b), W_outrail and W_inrail were set as 0.3 µm. In Fig. 3(c), W_outrail and W_inrail were set as 0.3 and 0.34 µm, respectively. Figure 3(b) shows that the electric field was biased towards the outer ring when W_outrail and W_inrail had the same value, in accordance with the bending effect [35,36]. This phenomenon could decrease the interaction between the light and the analyte in the slot region and reduce the sensitivity. Reducing W_outrail to avoid the bending effect and improve the coupling efficiency is a double benefit that could address this problem. Thus, the following parameters were determined for the structure of ChGS microring resonators: the inner ring radius (Rin) is 60 µm, the width of the strip bus waveguide (Wstrip) is 0.6 µm, W_outrail is 0.3 µm, and W_inrail is 0.34 µm.

 figure: Fig. 3.

Fig. 3. (a) Schematic of proposed ChGS microring resonator. (b) Electric field distribution with W_outrail = 0.3 µm and W_inrail = 0.3 µm. (c) Electric field distribution with W_outrail = 0.3 µm and W_inrail = 0.34 µm. Inserts are normalized transverse electric field distribution of the cross section.

Download Full Size | PPT Slide | PDF

3.2 Fabrication of ChGS microring resonators

A 300 nm-thick GeSbSe thin film was prepared by thermal evaporation on SiO2 cladding. Figure 4(a) shows the real and imaginary parts of the RI of the GeSbSe layer. The roughness of the GeSbSe film was determined as 0.373 nm of RMS by atomic force microscopy (in Fig. 4(b)), which showed high-quality GeSbSe film.

 figure: Fig. 4.

Fig. 4. (a) RI of GeSbSe film at a wavelength of 0.4-2.5 µm. (b) AFM image of 300 nm GeSbSe film.

Download Full Size | PPT Slide | PDF

The EBL technique (Raith eLINE Plus) was applied to transfer the designed ChGS microring resonators and grating couplers patterns onto a photoresist (ARP 6200) layer. A ChGS waveguide was fabricated first to determine the optimal etching parameters and process. After the development of the resist, the sample was baked on a hotplate for 1 min at 130°C before the etching process. Four different chemical gases, namely, trifluoro-methane (CHF3), carbon-tetrafluoride (CF), oxygen (O2), and argon (Ar), were used to etch the ChGS microring resonators and grating couplers by using an inductively coupled plasma etcher (Oxford 100). First, the chip was preprocessed by a gas mixture of O2–CHF3–Ar in a 30:3:2 flow ratio. Then, the gas mixture of CHF3-CF4 in a 2:1 flow ratio was induced to etch the GeSbSe layer, with a power of 300 W. The top-view SEM image of the ChGS waveguide is shown in Fig. 5(a), which demonstrates a satisfactory etching result with vertical sidewalls.

 figure: Fig. 5.

Fig. 5. (a) Top view of the fabricated ChGS. (b) SEM micrograph of the fabricated ChGS microring resonator device. (c) Coupling region between the bus waveguide and the microring resonator. (d) SEM image of the focusing grating coupler.

Download Full Size | PPT Slide | PDF

Then, ChGS microring resonators were obtained using the same optimized anisotropic etching process, as shown in Fig. 5(b). The enlargements of the coupling region and the grating coupler are shown in Figs. 5(c) and 5(d), respectively. The full-etched grating coupler for TE polarization, located at both ends of the ChGS microring resonator, has a period of 0.962 µm and a duty cycle of 0.74. It is notable that the fabrication error between the designed and fabricated structure parameters is about ±25 nm.

3.3 Measurement and sensing experiment

The transmission spectra of ChGS microring resonator device were measured by the built-up system shown in Fig. 6(a). The system contained a tunable laser (Santec TSL-550) ranging from 1500 nm to 1610 nm, and a polarization controller (Thorlabs FPC526) was used to ensure the TE mode light was coupled into the ChGS microring resonator through the single-mode fiber (SMF) with an incident angle of 10°. Another SMF was connected to the power meter (Santec MPM210) to collect the output light from the bus waveguide and obtain the transmission spectrum.

 figure: Fig. 6.

Fig. 6. (a) Schematic of the characterization setup. (b) Transmission spectrum of the ChGS microring resonator with Rin = 60 µm. (c) Single resonance peak with a Lorentzian fit to extra Q-factor. Experimental transmission (black points) and Lorentzian fitting (red line) of these transmission spectra.

Download Full Size | PPT Slide | PDF

Then, an RI sensing experiment of NaCl solutions was performed. Theoretically, changes in the neff of the device give rise to the variation of resonator wavelength. In this experiment, NaCl solutions with concentration changes from 0% to 2% were dropped onto the surface of the ChGS microring resonator device. Changes in neff could be probed, and wavelength variations were manifested. During the experiment, a thermoelectric cooler was placed on the bottom to maintain the temperature at 20°C to eliminate thermal drift.

4. Results and discussions

4.1 Performance of ChGS microring resonators

The output transmission spectrum with the wavelength of 1520-1580 nm with the tuning step of 0.005 nm is illustrated in Fig. 6(b). The critical coupling resonance is quantified by an extinction ratio higher than 20 dB [37], and the experimental extinction ratio was measured up to 23 dB, and the free spectral range was ∼2.2 nm. The ratio of the resonance wavelength (λres) to the peak of resonance full-width-at-half-maximum (ΔλFWHM) is defined as Q-factor:

$$Q = \frac{{{\lambda _{res}}}}{{\Delta {\lambda _{FWHM}}}}$$
Figure 6(c) shows one resonant peak outlined in red in Fig. 6(b), as fitted via Lorentzian fit. The resonance wavelength was 1548.06 nm, and the ΔλFWHM was 148 pm, while a Q-factor of ∼ 1 × 104 was achieved.

A notable detail is that the Q-factor was lower than that of strip microring and microdisk with similar ChGs material [3840], mainly because ChGS microring resonators possess mode mismatch, higher bending loss, and scattering loss than conventional microring resonators. Utilizing atomic layer deposition of dielectric films, such as TiO2 [41,42], is a method to reduce propagation losses. However, it brings in redundant procedures and increases the cost. Another method may be to improve the coupling efficiency [43]. However, the structure of the ChGS microring resonator benefits the application of RI sensing, as discussed below.

4.2 Sensitivity and LOD of RI sensors

Figure 7(a) shows the transmission spectrum shifting during the NaCl solution sensing experiment. The slot region and upper cladding region were filled with NaCl solutions under different concentrations in the experiment. As the concentrations of the NaCl solution increased, the resonance wavelength also increased. The NaCl solution concentration ranged from 0% to 2% with a 0.5% step, and the homologous RI ranged from 1.333 to 1.337, contributing to the change in the upper cladding. The RI increased by 0.0018 RIU for NaCl concentration, increasing 1% at 20°C [44]. Figure 7(b) plots the resonance wavelength shift as a function of NaCl concentration. The RI sensitivity of the sensor is defined as follows:

$$S = \frac{{\Delta {\lambda _{res}}}}{{\Delta {n_{cladding}}}}$$
where Δλres is the resonance wavelength shift, and Δncladding is the RI variation in cladding medium. The sensitivity was reflected by the slope of the linear fitting line, and it was calculated to be 471 nm/RIU. The sensitivity was four times higher than the recent reports on high-sensitivity microring resonators [45].

 figure: Fig. 7.

Fig. 7. (a) Spectrum shifts along with upper cladding medium (NaCl concentration). (b) Peak wavelength shift as a function of the change in the RI of the NaCl solutions.

Download Full Size | PPT Slide | PDF

LOD could be defined as the minimum detectable RI change. The definition that the change in RI corresponds to one resonator linewidth is characterized as the intrinsic device performance. This definition is also known as intrinsic LOD as follows [46]:

$$iLOD = \frac{{{\lambda _{res}}}}{{QS}}$$
where λres is the resonance wavelength, and Q and S are the quality factor and sensitivity of the device. The experimental results above obtained an intrinsic LOD of ∼3.3 × 10­−4 RIU.

Table 1 summarizes the features of some slot microring resonators on silicon-based materials and ChGs in near infrared. It is notable that our work with ChGs is slightly less sensitive than that in [22] and [30], but with a larger Q-factor. Compared with other devices listed in the table, our work shows advantages both in Q-factor and sensitivity, although with a relatively large radius, which indicates the feasibility of high Q-factor, ultrasensitivity and reasonable LOD slot microring resonator sensor for ChGs.

Tables Icon

Table 1. Comparison between reported slot microring resonators based on different materials

5. Conclusion

To sum up, a slot waveguide is designed and optimized theoretically based on a high-performance optical material, ChGs. The finite element method based on the mode solver is used for numerical analysis and simulations of the ChGs slot waveguide. PCF is enhanced in the slot region and cladding region to the benefit of designing a ChGS microring resonator and high-sensitivity sensors. The maximum values of PCF are obtained to be ΓC = 56.7% and ΓS = 36.3%. The ChGS microring resonator could improve the sensitivity compared with traditional strip microring resonator devices. The Q-factor of the ChGS microring resonator is ∼1 × 104. RI sensing experiment is carried out to demonstrate the sensitivity. A sensitivity of ∼471 nm/RIU and an iLOD of ∼3.3 × 10­−4 RIU in the ChGS microring resonator are measured with Rin = 60 µm. This work shows that ChGS has promising application aspects in mid-infrared field of high-sensitivity sensing.

Funding

Natural Science Foundation of Zhejiang Province (No. LD22F040002, No. LD19F050001); National Natural Science Foundation of China (No. 61875099, No. 62175202, No. 12104375); Natural Science Foundation of Ningbo (No. 202003N4007); K. C. Wong Magna Fund in Ningbo University.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011). [CrossRef]  

2. C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater Sci. 93, 1–44 (2018). [CrossRef]  

3. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995). [CrossRef]  

4. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As–S–Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002). [CrossRef]  

5. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007). [CrossRef]  

6. C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Waveguides based on Te2As3Se5 thick films for spatial interferometry,” J. Non-Cryst. Solids 352(23-25), 2416–2419 (2006). [CrossRef]  

7. L. Zhang, W. Zhang, X. Wang, P. Zhang, S. Dai, and Q. Nie, “Investigation of Ge20Sb15Se65 photonic crystal slab waveguides with slow light at infrared wavelength,” Opt. Mater. Express 3(9), 1438–1443 (2013). [CrossRef]  

8. Z. Sun, J. Zhou, and R. Ahuja, “Structure of Phase Change Materials for Data Storage,” Phys. Rev. Lett. 96(5), 055507 (2006). [CrossRef]  

9. W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide Glass Optical Fiber Doped with Pr3+ for U-Band Optical Amplifier,” ETRI J 27(4), 411–417 (2005). [CrossRef]  

10. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007). [CrossRef]  

11. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002). [CrossRef]  

12. D.-H. Baek and J. Kim, “MoS2 gas sensor functionalized by Pd for the detection of hydrogen,” Sens. Actuators, B 250, 686–691 (2017). [CrossRef]  

13. C. Blin, Z. Han, H. A. Girard, P. Bergonzo, P. Boucaud, M. El Kurdi, S. Saada, S. Sauvage, and X. Checoury, “Surface-sensitive diamond photonic crystals for high-performance gas detection,” Opt. Lett. 41(18), 4360–4363 (2016). [CrossRef]  

14. Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014). [CrossRef]  

15. M. G. Manera, A. Colombelli, A. Taurino, A. G. Martin, and R. Rella, “Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing,” Sci. Rep. 8(1), 12640 (2018). [CrossRef]  

16. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007). [CrossRef]  

17. C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic Crystals for Chemical Sensing and Biosensing,” Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014). [CrossRef]  

18. B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors,” Sensors 11(6), 5729–5739 (2011). [CrossRef]  

19. N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40(17), 3934–3936 (2015). [CrossRef]  

20. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef]  

21. A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016). [CrossRef]  

22. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008). [CrossRef]  

23. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014). [CrossRef]  

24. B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-Gel-Based Integrated Optical Microring Resonator Humidity Sensor,” IEEE Sens. J. 9(7), 740–747 (2009). [CrossRef]  

25. X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012). [CrossRef]  

26. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010). [CrossRef]  

27. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013). [CrossRef]  

28. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef]  

29. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef]  

30. V. Mere, H. Muthuganesan, Y. Kar, C. V. Kruijsdijk, and S. K. Selvaraja, “On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator,” IEEE Sens. J. 20(11), 5970–5975 (2020). [CrossRef]  

31. Y. Hong, H. Ge, and J. Hong, “Compact biosensors based on thin film silicon nitride microring resonators,” J. Phys.: Conf. Ser. 2012(1), 012037 (2021). [CrossRef]  

32. K. B. Gylfason, C. F. Carlborg, A. Kaźmierczak, F. Dortu, H. Sohlström, L. Vivien, C. A. Barrios, W. V. D. Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18(4), 3226–3237 (2010). [CrossRef]  

33. N. Ashok, Y. L. Lee, and W. Shin, “GeAsSe chalcogenide slot optical waveguide ring resonator for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), 2017, 1–4.

34. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007). [CrossRef]  

35. K. R. Hiremath, “Analytical modal analysis of bent slot waveguides,” J. Opt. Soc. Am. A 26(11), 2321–2326 (2009). [CrossRef]  

36. A. Kargar and C. Y. Chao, “Design and optimization of waveguide sensitivity in slot microring sensors,” J. Opt. Soc. Am. A 28(4), 596–603 (2011). [CrossRef]  

37. W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016). [CrossRef]  

38. R. Zhang, Z. Yang, M. Zhao, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High quality, high index-contrast chalcogenide microdisk resonators,” Opt. Express 29(12), 17775–17783 (2021). [CrossRef]  

39. Z. Yang, R. Zhang, Z. Wang, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High-Q, submicron-confined chalcogenide microring resonators,” Opt. Express 29(21), 33225–33233 (2021). [CrossRef]  

40. J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018). [CrossRef]  

41. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19(12), 11529–11538 (2011). [CrossRef]  

42. A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Liow, M. Hiltunen, A. Tervonen, G. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19(27), 26275–26282 (2011). [CrossRef]  

43. W. Zhang, S. Serna, X. L. Roux, C. Alonso-Ramos, L. Vivien, and E. Cassan, “Analysis of silicon-on-insulator slot waveguide ring resonators targeting high Q-factors,” Opt. Lett. 40(23), 5566–5569 (2015). [CrossRef]  

44. D. R. Lide, CRC handbook of chemistry and physics (CRC press, 2004), Vol. 85.

45. W. Huang, Y. Luo, W. Zhang, C. Li, L. Li, Z. Yang, and P. Xu, “High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator,” Infrared Phys. Technol. 116, 103792 (2021). [CrossRef]  

46. T. Yoshie, L. Tang, and S. Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11(2), 1972–1991 (2011). [CrossRef]  

47. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009). [CrossRef]  

48. C. A. Barrios, K. B. Gylfason, B. Sanchez, A. Griol, H. Sohlstrom, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007). [CrossRef]  

References

  • View by:

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  2. C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater Sci. 93, 1–44 (2018).
    [Crossref]
  3. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
    [Crossref]
  4. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As–S–Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
    [Crossref]
  5. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
    [Crossref]
  6. C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Waveguides based on Te2As3Se5 thick films for spatial interferometry,” J. Non-Cryst. Solids 352(23-25), 2416–2419 (2006).
    [Crossref]
  7. L. Zhang, W. Zhang, X. Wang, P. Zhang, S. Dai, and Q. Nie, “Investigation of Ge20Sb15Se65 photonic crystal slab waveguides with slow light at infrared wavelength,” Opt. Mater. Express 3(9), 1438–1443 (2013).
    [Crossref]
  8. Z. Sun, J. Zhou, and R. Ahuja, “Structure of Phase Change Materials for Data Storage,” Phys. Rev. Lett. 96(5), 055507 (2006).
    [Crossref]
  9. W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide Glass Optical Fiber Doped with Pr3+ for U-Band Optical Amplifier,” ETRI J 27(4), 411–417 (2005).
    [Crossref]
  10. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
    [Crossref]
  11. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
    [Crossref]
  12. D.-H. Baek and J. Kim, “MoS2 gas sensor functionalized by Pd for the detection of hydrogen,” Sens. Actuators, B 250, 686–691 (2017).
    [Crossref]
  13. C. Blin, Z. Han, H. A. Girard, P. Bergonzo, P. Boucaud, M. El Kurdi, S. Saada, S. Sauvage, and X. Checoury, “Surface-sensitive diamond photonic crystals for high-performance gas detection,” Opt. Lett. 41(18), 4360–4363 (2016).
    [Crossref]
  14. Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
    [Crossref]
  15. M. G. Manera, A. Colombelli, A. Taurino, A. G. Martin, and R. Rella, “Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing,” Sci. Rep. 8(1), 12640 (2018).
    [Crossref]
  16. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
    [Crossref]
  17. C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic Crystals for Chemical Sensing and Biosensing,” Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014).
    [Crossref]
  18. B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors,” Sensors 11(6), 5729–5739 (2011).
    [Crossref]
  19. N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40(17), 3934–3936 (2015).
    [Crossref]
  20. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref]
  21. A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
    [Crossref]
  22. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
    [Crossref]
  23. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
    [Crossref]
  24. B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-Gel-Based Integrated Optical Microring Resonator Humidity Sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
    [Crossref]
  25. X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012).
    [Crossref]
  26. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref]
  27. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
    [Crossref]
  28. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref]
  29. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref]
  30. V. Mere, H. Muthuganesan, Y. Kar, C. V. Kruijsdijk, and S. K. Selvaraja, “On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator,” IEEE Sens. J. 20(11), 5970–5975 (2020).
    [Crossref]
  31. Y. Hong, H. Ge, and J. Hong, “Compact biosensors based on thin film silicon nitride microring resonators,” J. Phys.: Conf. Ser. 2012(1), 012037 (2021).
    [Crossref]
  32. K. B. Gylfason, C. F. Carlborg, A. Kaźmierczak, F. Dortu, H. Sohlström, L. Vivien, C. A. Barrios, W. V. D. Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18(4), 3226–3237 (2010).
    [Crossref]
  33. N. Ashok, Y. L. Lee, and W. Shin, “GeAsSe chalcogenide slot optical waveguide ring resonator for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), 2017, 1–4.
  34. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
    [Crossref]
  35. K. R. Hiremath, “Analytical modal analysis of bent slot waveguides,” J. Opt. Soc. Am. A 26(11), 2321–2326 (2009).
    [Crossref]
  36. A. Kargar and C. Y. Chao, “Design and optimization of waveguide sensitivity in slot microring sensors,” J. Opt. Soc. Am. A 28(4), 596–603 (2011).
    [Crossref]
  37. W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
    [Crossref]
  38. R. Zhang, Z. Yang, M. Zhao, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High quality, high index-contrast chalcogenide microdisk resonators,” Opt. Express 29(12), 17775–17783 (2021).
    [Crossref]
  39. Z. Yang, R. Zhang, Z. Wang, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High-Q, submicron-confined chalcogenide microring resonators,” Opt. Express 29(21), 33225–33233 (2021).
    [Crossref]
  40. J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
    [Crossref]
  41. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19(12), 11529–11538 (2011).
    [Crossref]
  42. A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Liow, M. Hiltunen, A. Tervonen, G. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19(27), 26275–26282 (2011).
    [Crossref]
  43. W. Zhang, S. Serna, X. L. Roux, C. Alonso-Ramos, L. Vivien, and E. Cassan, “Analysis of silicon-on-insulator slot waveguide ring resonators targeting high Q-factors,” Opt. Lett. 40(23), 5566–5569 (2015).
    [Crossref]
  44. D. R. Lide, CRC handbook of chemistry and physics (CRC press, 2004), Vol. 85.
  45. W. Huang, Y. Luo, W. Zhang, C. Li, L. Li, Z. Yang, and P. Xu, “High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator,” Infrared Phys. Technol. 116, 103792 (2021).
    [Crossref]
  46. T. Yoshie, L. Tang, and S. Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11(2), 1972–1991 (2011).
    [Crossref]
  47. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
    [Crossref]
  48. C. A. Barrios, K. B. Gylfason, B. Sanchez, A. Griol, H. Sohlstrom, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
    [Crossref]

2021 (4)

Y. Hong, H. Ge, and J. Hong, “Compact biosensors based on thin film silicon nitride microring resonators,” J. Phys.: Conf. Ser. 2012(1), 012037 (2021).
[Crossref]

R. Zhang, Z. Yang, M. Zhao, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High quality, high index-contrast chalcogenide microdisk resonators,” Opt. Express 29(12), 17775–17783 (2021).
[Crossref]

Z. Yang, R. Zhang, Z. Wang, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High-Q, submicron-confined chalcogenide microring resonators,” Opt. Express 29(21), 33225–33233 (2021).
[Crossref]

W. Huang, Y. Luo, W. Zhang, C. Li, L. Li, Z. Yang, and P. Xu, “High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator,” Infrared Phys. Technol. 116, 103792 (2021).
[Crossref]

2020 (1)

V. Mere, H. Muthuganesan, Y. Kar, C. V. Kruijsdijk, and S. K. Selvaraja, “On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator,” IEEE Sens. J. 20(11), 5970–5975 (2020).
[Crossref]

2018 (3)

C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater Sci. 93, 1–44 (2018).
[Crossref]

M. G. Manera, A. Colombelli, A. Taurino, A. G. Martin, and R. Rella, “Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing,” Sci. Rep. 8(1), 12640 (2018).
[Crossref]

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

2017 (1)

D.-H. Baek and J. Kim, “MoS2 gas sensor functionalized by Pd for the detection of hydrogen,” Sens. Actuators, B 250, 686–691 (2017).
[Crossref]

2016 (3)

2015 (2)

2014 (3)

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
[Crossref]

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic Crystals for Chemical Sensing and Biosensing,” Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (6)

2010 (2)

2009 (3)

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-Gel-Based Integrated Optical Microring Resonator Humidity Sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

K. R. Hiremath, “Analytical modal analysis of bent slot waveguides,” J. Opt. Soc. Am. A 26(11), 2321–2326 (2009).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[Crossref]

2008 (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref]

2007 (6)

2006 (2)

C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Waveguides based on Te2As3Se5 thick films for spatial interferometry,” J. Non-Cryst. Solids 352(23-25), 2416–2419 (2006).
[Crossref]

Z. Sun, J. Zhou, and R. Ahuja, “Structure of Phase Change Materials for Data Storage,” Phys. Rev. Lett. 96(5), 055507 (2006).
[Crossref]

2005 (1)

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide Glass Optical Fiber Doped with Pr3+ for U-Band Optical Amplifier,” ETRI J 27(4), 411–417 (2005).
[Crossref]

2004 (1)

2002 (2)

J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As–S–Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

1995 (1)

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

Agarwal, A.

Aggarwal, I. D.

Ahmed, Z.

Ahn, J. T.

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide Glass Optical Fiber Doped with Pr3+ for U-Band Optical Amplifier,” ETRI J 27(4), 411–417 (2005).
[Crossref]

Ahuja, R.

Z. Sun, J. Zhou, and R. Ahuja, “Structure of Phase Change Materials for Data Storage,” Phys. Rev. Lett. 96(5), 055507 (2006).
[Crossref]

Alasaarela, T.

Alloatti, L.

Almeida, V. R.

Alonso-Ramos, C.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Ashok, N.

N. Ashok, Y. L. Lee, and W. Shin, “GeAsSe chalcogenide slot optical waveguide ring resonator for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), 2017, 1–4.

Baek, D.-H.

D.-H. Baek and J. Kim, “MoS2 gas sensor functionalized by Pd for the detection of hydrogen,” Sens. Actuators, B 250, 686–691 (2017).
[Crossref]

Baets, R.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[Crossref]

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref]

Baker, N. J.

Bao, M. H.

Barrios, C. A.

Bartolozzi, I.

Berger, M.

Bergonzo, P.

Bhola, B.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-Gel-Based Integrated Optical Microring Resonator Humidity Sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

Bienstman, P.

Blin, C.

Bogaerts, W.

Boucaud, P.

Boyraz, O.

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Broquin, J. E.

C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Waveguides based on Te2As3Se5 thick films for spatial interferometry,” J. Non-Cryst. Solids 352(23-25), 2416–2419 (2006).
[Crossref]

Cai, H.

Carlborg, C. F.

Carlie, N.

Casquel, R.

Cassan, E.

Chao, C. Y.

Chardon, A. M.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Checoury, X.

Chen, L.

Cheung, K. C.

Choi, D. Y.

Choi, Y. G.

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide Glass Optical Fiber Doped with Pr3+ for U-Band Optical Amplifier,” ETRI J 27(4), 411–417 (2005).
[Crossref]

Chrostowski, L.

Chung, W. J.

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide Glass Optical Fiber Doped with Pr3+ for U-Band Optical Amplifier,” ETRI J 27(4), 411–417 (2005).
[Crossref]

Claes, T.

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[Crossref]

Colombelli, A.

M. G. Manera, A. Colombelli, A. Taurino, A. G. Martin, and R. Rella, “Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing,” Sci. Rep. 8(1), 12640 (2018).
[Crossref]

Dai, S.

De Vos, K.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[Crossref]

Dell’Olio, F.

Donzella, V.

Dortu, F.

Du, Q.

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

Dulashko, Y.

Eggleton, B. J.

El Kurdi, M.

Fan, J.

Fan, X.

Fenzl, C.

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic Crystals for Chemical Sensing and Biosensing,” Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014).
[Crossref]

Fernandez Gavela, A.

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

Finsterbusch, K.

Flueckiger, J.

Freude, W.

Fu, L.

Ge, H.

Y. Hong, H. Ge, and J. Hong, “Compact biosensors based on thin film silicon nitride microring resonators,” J. Phys.: Conf. Ser. 2012(1), 012037 (2021).
[Crossref]

Girard, H. A.

Grajales Garcia, D.

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

Griol, A.

Grist, S. M.

Gylfason, K. B.

Hafezi, M.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Han, Z.

Harbold, J. M.

Hewak, D. W.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Hiltunen, M.

Hiremath, K. R.

Hirsch, T.

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic Crystals for Chemical Sensing and Biosensing,” Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014).
[Crossref]

Holgado, M.

Hong, J.

Y. Hong, H. Ge, and J. Hong, “Compact biosensors based on thin film silicon nitride microring resonators,” J. Phys.: Conf. Ser. 2012(1), 012037 (2021).
[Crossref]

Hong, Y.

Y. Hong, H. Ge, and J. Hong, “Compact biosensors based on thin film silicon nitride microring resonators,” J. Phys.: Conf. Ser. 2012(1), 012037 (2021).
[Crossref]

Honkanen, S.

Hu, J.

Huang, W.

W. Huang, Y. Luo, W. Zhang, C. Li, L. Li, Z. Yang, and P. Xu, “High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator,” Infrared Phys. Technol. 116, 103792 (2021).
[Crossref]

Huang, Y.

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Huang, Y. P.

Ilday, F. Ö.

Ji, X. M.

Jiang, L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors,” Sensors 11(6), 5729–5739 (2011).
[Crossref]

Kalyoncu, S. K.

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Kang, Z.

Kar, Y.

V. Mere, H. Muthuganesan, Y. Kar, C. V. Kruijsdijk, and S. K. Selvaraja, “On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator,” IEEE Sens. J. 20(11), 5970–5975 (2020).
[Crossref]

Kargar, A.

Karvonen, L.

Kazmierczak, A.

Kern, P.

C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Waveguides based on Te2As3Se5 thick films for spatial interferometry,” J. Non-Cryst. Solids 352(23-25), 2416–2419 (2006).
[Crossref]

Kim, J.

D.-H. Baek and J. Kim, “MoS2 gas sensor functionalized by Pd for the detection of hydrogen,” Sens. Actuators, B 250, 686–691 (2017).
[Crossref]

Kimerling, L.

Kirk, J. T.

Klimov, N. N.

Korn, D.

Kruijsdijk, C. V.

V. Mere, H. Muthuganesan, Y. Kar, C. V. Kruijsdijk, and S. K. Selvaraja, “On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator,” IEEE Sens. J. 20(11), 5970–5975 (2020).
[Crossref]

Kwong, D. L.

Labadie, L.

C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Waveguides based on Te2As3Se5 thick films for spatial interferometry,” J. Non-Cryst. Solids 352(23-25), 2416–2419 (2006).
[Crossref]

Lamont, M. R. E.

Le Roux, X.

Lechuga, L. M.

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

Lee, Y. L.

N. Ashok, Y. L. Lee, and W. Shin, “GeAsSe chalcogenide slot optical waveguide ring resonator for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), 2017, 1–4.

Leuthold, J.

Li, B.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors,” Sensors 11(6), 5729–5739 (2011).
[Crossref]

Li, C.

W. Huang, Y. Luo, W. Zhang, C. Li, L. Li, Z. Yang, and P. Xu, “High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator,” Infrared Phys. Technol. 116, 103792 (2021).
[Crossref]

Li, L.

W. Huang, Y. Luo, W. Zhang, C. Li, L. Li, Z. Yang, and P. Xu, “High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator,” Infrared Phys. Technol. 116, 103792 (2021).
[Crossref]

Lide, D. R.

D. R. Lide, CRC handbook of chemistry and physics (CRC press, 2004), Vol. 85.

Lin, C.

C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater Sci. 93, 1–44 (2018).
[Crossref]

Lin, R.

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

Liow, T.

Lipson, M.

Liu, A. Q.

Lo, G.

Luo, Y.

W. Huang, Y. Luo, W. Zhang, C. Li, L. Li, Z. Yang, and P. Xu, “High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator,” Infrared Phys. Technol. 116, 103792 (2021).
[Crossref]

Luther-Davies, B.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Madden, S.

Mahalingam, H.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-Gel-Based Integrated Optical Microring Resonator Humidity Sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

Mairaj, A. K.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Majumdar, A.

Manera, M. G.

M. G. Manera, A. Colombelli, A. Taurino, A. G. Martin, and R. Rella, “Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing,” Sci. Rep. 8(1), 12640 (2018).
[Crossref]

Martin, A. G.

M. G. Manera, A. Colombelli, A. Taurino, A. G. Martin, and R. Rella, “Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing,” Sci. Rep. 8(1), 12640 (2018).
[Crossref]

Mere, V.

V. Mere, H. Muthuganesan, Y. Kar, C. V. Kruijsdijk, and S. K. Selvaraja, “On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator,” IEEE Sens. J. 20(11), 5970–5975 (2020).
[Crossref]

Mittal, S.

Molera, J. G.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[Crossref]

Moss, D. J.

Muthuganesan, H.

V. Mere, H. Muthuganesan, Y. Kar, C. V. Kruijsdijk, and S. K. Selvaraja, “On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator,” IEEE Sens. J. 20(11), 5970–5975 (2020).
[Crossref]

Nguyen, H. C.

Nguyen, V. Q.

Nie, Q.

Nosovitskiy, P.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-Gel-Based Integrated Optical Microring Resonator Humidity Sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

Palmer, R.

Park, B. J.

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide Glass Optical Fiber Doped with Pr3+ for U-Band Optical Amplifier,” ETRI J 27(4), 411–417 (2005).
[Crossref]

Passaro, V. M. N.

Petit, L.

Pradel, A.

C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Waveguides based on Te2As3Se5 thick films for spatial interferometry,” J. Non-Cryst. Solids 352(23-25), 2416–2419 (2006).
[Crossref]

Ramirez, J. C.

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

Ranieri, V.

C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Waveguides based on Te2As3Se5 thick films for spatial interferometry,” J. Non-Cryst. Solids 352(23-25), 2416–2419 (2006).
[Crossref]

Ratner, D. M.

Rella, R.

M. G. Manera, A. Colombelli, A. Taurino, A. G. Martin, and R. Rella, “Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing,” Sci. Rep. 8(1), 12640 (2018).
[Crossref]

Richardson, K.

Riziotis, C.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Robinson, J. T.

Roux, X. L.

Rüssel, C.

C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater Sci. 93, 1–44 (2018).
[Crossref]

Saada, S.

Sanchez, B.

Sanghera, J. S.

Sauvage, S.

Säynätjoki, A.

Schacht, E.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[Crossref]

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref]

Schmidt, S. A.

Seddon, A. B.

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

Selvaraja, S. K.

V. Mere, H. Muthuganesan, Y. Kar, C. V. Kruijsdijk, and S. K. Selvaraja, “On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator,” IEEE Sens. J. 20(11), 5970–5975 (2020).
[Crossref]

Seo, H. S.

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide Glass Optical Fiber Doped with Pr3+ for U-Band Optical Amplifier,” ETRI J 27(4), 411–417 (2005).
[Crossref]

Serna, S.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Shaw, L. B.

Shen, X.

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

Shepherd, D. P.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Shi, W.

Shin, W.

N. Ashok, Y. L. Lee, and W. Shin, “GeAsSe chalcogenide slot optical waveguide ring resonator for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), 2017, 1–4.

Smith, P. G. R.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Sohlstrom, H.

Sohlström, H.

Steier, W. H.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-Gel-Based Integrated Optical Microring Resonator Humidity Sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

Stemme, G.

Strouse, G. F.

Su, S. Y.

T. Yoshie, L. Tang, and S. Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11(2), 1972–1991 (2011).
[Crossref]

Sumetsky, M.

Sun, Z.

Z. Sun, J. Zhou, and R. Ahuja, “Structure of Phase Change Materials for Data Storage,” Phys. Rev. Lett. 96(5), 055507 (2006).
[Crossref]

Ta’eed, V. G.

Talebi Fard, S.

Tang, L.

T. Yoshie, L. Tang, and S. Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11(2), 1972–1991 (2011).
[Crossref]

Tarasov, V.

Taurino, A.

M. G. Manera, A. Colombelli, A. Taurino, A. G. Martin, and R. Rella, “Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing,” Sci. Rep. 8(1), 12640 (2018).
[Crossref]

Taylor, J. M.

Tervonen, A.

Torun, R.

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Tsai, H.-L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors,” Sensors 11(6), 5729–5739 (2011).
[Crossref]

Tsai, J. M.

Tu, X.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Vigreux-Bercovici, C.

C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Waveguides based on Te2As3Se5 thick films for spatial interferometry,” J. Non-Cryst. Solids 352(23-25), 2416–2419 (2006).
[Crossref]

Vivien, L.

Vos, K. D.

Wang, R.

Wang, S.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors,” Sensors 11(6), 5729–5739 (2011).
[Crossref]

Wang, X.

Wang, Z.

Wijngaart, W. V. D.

Windeler, R. S.

Wise, F. W.

Wolfbeis, O. S.

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic Crystals for Chemical Sensing and Biosensing,” Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014).
[Crossref]

Wu, Y.

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

Xiao, H.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors,” Sensors 11(6), 5729–5739 (2011).
[Crossref]

Xu, H.

Xu, P.

Z. Yang, R. Zhang, Z. Wang, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High-Q, submicron-confined chalcogenide microring resonators,” Opt. Express 29(21), 33225–33233 (2021).
[Crossref]

R. Zhang, Z. Yang, M. Zhao, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High quality, high index-contrast chalcogenide microdisk resonators,” Opt. Express 29(12), 17775–17783 (2021).
[Crossref]

W. Huang, Y. Luo, W. Zhang, C. Li, L. Li, Z. Yang, and P. Xu, “High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator,” Infrared Phys. Technol. 116, 103792 (2021).
[Crossref]

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

Xu, Q.

Yang, Z.

Yoshie, T.

T. Yoshie, L. Tang, and S. Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11(2), 1972–1991 (2011).
[Crossref]

Zhang, L.

Zhang, P.

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

L. Zhang, W. Zhang, X. Wang, P. Zhang, S. Dai, and Q. Nie, “Investigation of Ge20Sb15Se65 photonic crystal slab waveguides with slow light at infrared wavelength,” Opt. Mater. Express 3(9), 1438–1443 (2013).
[Crossref]

Zhang, R.

Zhang, W.

Z. Yang, R. Zhang, Z. Wang, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High-Q, submicron-confined chalcogenide microring resonators,” Opt. Express 29(21), 33225–33233 (2021).
[Crossref]

R. Zhang, Z. Yang, M. Zhao, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High quality, high index-contrast chalcogenide microdisk resonators,” Opt. Express 29(12), 17775–17783 (2021).
[Crossref]

W. Huang, Y. Luo, W. Zhang, C. Li, L. Li, Z. Yang, and P. Xu, “High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator,” Infrared Phys. Technol. 116, 103792 (2021).
[Crossref]

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
[Crossref]

W. Zhang, S. Serna, X. L. Roux, C. Alonso-Ramos, L. Vivien, and E. Cassan, “Analysis of silicon-on-insulator slot waveguide ring resonators targeting high Q-factors,” Opt. Lett. 40(23), 5566–5569 (2015).
[Crossref]

L. Zhang, W. Zhang, X. Wang, P. Zhang, S. Dai, and Q. Nie, “Investigation of Ge20Sb15Se65 photonic crystal slab waveguides with slow light at infrared wavelength,” Opt. Mater. Express 3(9), 1438–1443 (2013).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Zhao, M.

Zhao, Q.

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Zhao, X.

Zhao, Y.

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

Zheng, J.

Zhou, J.

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012).
[Crossref]

Z. Sun, J. Zhou, and R. Ahuja, “Structure of Phase Change Materials for Data Storage,” Phys. Rev. Lett. 96(5), 055507 (2006).
[Crossref]

Zhou, L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors,” Sensors 11(6), 5729–5739 (2011).
[Crossref]

Angew. Chem. Int. Ed. (1)

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic Crystals for Chemical Sensing and Biosensing,” Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014).
[Crossref]

Appl. Phys. Lett. (1)

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

ETRI J (1)

W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, “Selenide Glass Optical Fiber Doped with Pr3+ for U-Band Optical Amplifier,” ETRI J 27(4), 411–417 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, P. Zhang, W. Zhang, and X. Shen, “Large Nonlinearity and Low Loss Ge-Sb-Se Glass Photonic Devices in Near-Infrared,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018).
[Crossref]

IEEE Photonics J. (1)

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[Crossref]

IEEE Sens. J. (2)

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-Gel-Based Integrated Optical Microring Resonator Humidity Sensor,” IEEE Sens. J. 9(7), 740–747 (2009).
[Crossref]

V. Mere, H. Muthuganesan, Y. Kar, C. V. Kruijsdijk, and S. K. Selvaraja, “On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator,” IEEE Sens. J. 20(11), 5970–5975 (2020).
[Crossref]

Infrared Phys. Technol. (1)

W. Huang, Y. Luo, W. Zhang, C. Li, L. Li, Z. Yang, and P. Xu, “High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator,” Infrared Phys. Technol. 116, 103792 (2021).
[Crossref]

J. Non-Cryst. Solids (2)

C. Vigreux-Bercovici, V. Ranieri, L. Labadie, J. E. Broquin, P. Kern, and A. Pradel, “Waveguides based on Te2As3Se5 thick films for spatial interferometry,” J. Non-Cryst. Solids 352(23-25), 2416–2419 (2006).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys.: Conf. Ser. (1)

Y. Hong, H. Ge, and J. Hong, “Compact biosensors based on thin film silicon nitride microring resonators,” J. Phys.: Conf. Ser. 2012(1), 012037 (2021).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Opt. Commun. (1)

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Opt. Express (15)

V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
[Crossref]

X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012).
[Crossref]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[Crossref]

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref]

K. B. Gylfason, C. F. Carlborg, A. Kaźmierczak, F. Dortu, H. Sohlström, L. Vivien, C. A. Barrios, W. V. D. Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18(4), 3226–3237 (2010).
[Crossref]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref]

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
[Crossref]

R. Zhang, Z. Yang, M. Zhao, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High quality, high index-contrast chalcogenide microdisk resonators,” Opt. Express 29(12), 17775–17783 (2021).
[Crossref]

Z. Yang, R. Zhang, Z. Wang, P. Xu, W. Zhang, Z. Kang, J. Zheng, S. Dai, R. Wang, and A. Majumdar, “High-Q, submicron-confined chalcogenide microring resonators,” Opt. Express 29(21), 33225–33233 (2021).
[Crossref]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19(12), 11529–11538 (2011).
[Crossref]

A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Liow, M. Hiltunen, A. Tervonen, G. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19(27), 26275–26282 (2011).
[Crossref]

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref]

Opt. Lett. (7)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

Z. Sun, J. Zhou, and R. Ahuja, “Structure of Phase Change Materials for Data Storage,” Phys. Rev. Lett. 96(5), 055507 (2006).
[Crossref]

Prog. Mater Sci. (1)

C. Lin, C. Rüssel, and S. Dai, “Chalcogenide glass-ceramics: Functional design and crystallization mechanism,” Prog. Mater Sci. 93, 1–44 (2018).
[Crossref]

Sci. Rep. (1)

M. G. Manera, A. Colombelli, A. Taurino, A. G. Martin, and R. Rella, “Magneto-Optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing,” Sci. Rep. 8(1), 12640 (2018).
[Crossref]

Sens. Actuators, B (1)

D.-H. Baek and J. Kim, “MoS2 gas sensor functionalized by Pd for the detection of hydrogen,” Sens. Actuators, B 250, 686–691 (2017).
[Crossref]

Sensors (3)

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors,” Sensors 11(6), 5729–5739 (2011).
[Crossref]

A. Fernandez Gavela, D. Grajales Garcia, J. C. Ramirez, and L. M. Lechuga, “Last Advances in Silicon-Based Optical Biosensors,” Sensors 16(3), 285 (2016).
[Crossref]

T. Yoshie, L. Tang, and S. Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11(2), 1972–1991 (2011).
[Crossref]

Other (2)

D. R. Lide, CRC handbook of chemistry and physics (CRC press, 2004), Vol. 85.

N. Ashok, Y. L. Lee, and W. Shin, “GeAsSe chalcogenide slot optical waveguide ring resonator for refractive index sensing,” in 2017 25th Optical Fiber Sensors Conference (OFS), 2017, 1–4.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Cross-section views of the designed ChGS waveguide. (b) PCF of the slot region and cladding region as a function of Wrail.
Fig. 2.
Fig. 2. (a) 3D surface plot of the E-field amplitude. (b) Simulation results of the effective index as a function of Wrail. The slot waveguide is covered with air. Only the modes above the horizontal dashed lines are guided.
Fig. 3.
Fig. 3. (a) Schematic of proposed ChGS microring resonator. (b) Electric field distribution with W_outrail = 0.3 µm and W_inrail = 0.3 µm. (c) Electric field distribution with W_outrail = 0.3 µm and W_inrail = 0.34 µm. Inserts are normalized transverse electric field distribution of the cross section.
Fig. 4.
Fig. 4. (a) RI of GeSbSe film at a wavelength of 0.4-2.5 µm. (b) AFM image of 300 nm GeSbSe film.
Fig. 5.
Fig. 5. (a) Top view of the fabricated ChGS. (b) SEM micrograph of the fabricated ChGS microring resonator device. (c) Coupling region between the bus waveguide and the microring resonator. (d) SEM image of the focusing grating coupler.
Fig. 6.
Fig. 6. (a) Schematic of the characterization setup. (b) Transmission spectrum of the ChGS microring resonator with Rin = 60 µm. (c) Single resonance peak with a Lorentzian fit to extra Q-factor. Experimental transmission (black points) and Lorentzian fitting (red line) of these transmission spectra.
Fig. 7.
Fig. 7. (a) Spectrum shifts along with upper cladding medium (NaCl concentration). (b) Peak wavelength shift as a function of the change in the RI of the NaCl solutions.

Tables (1)

Tables Icon

Table 1. Comparison between reported slot microring resonators based on different materials

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Γ S  =  S | E ( x , y ) | 2 d x d y | E ( x , y ) | 2 d x d y
Γ C  =  C | E ( x , y ) | 2 d x d y | E ( x , y ) | 2 d x d y
Q = λ r e s Δ λ F W H M
S = Δ λ r e s Δ n c l a d d i n g
i L O D = λ r e s Q S

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved