Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-temperature-resistant chemical composition Bragg gratings in Er 3 + -doped optical fiber

Not Accessible

Your library or personal account may give you access

Abstract

Chemical composition gratings (CCGs), unlike standard fiber Bragg gratings (FBGs), do not suffer a significant decrease in reflectance or an irreversible wavelength shift when they are exposed to elevated temperatures. To date, the growth of CCGs has been related to the fluorine content of the fibers in which they are written. It is shown that FBGs with high thermal stability, resembling CCGs, can be fabricated in Er3+-doped optical fibers that do not contain any fluorine.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Formation of thermally stable chemical composition gratings in optical fibers

Michael Fokine
J. Opt. Soc. Am. B 19(8) 1759-1765 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved