Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate efficient coherence enhancement of a chirped distributed feedback (DFB) laser for frequency-modulated continuous-wave (FMCW) reflectometry. Both sweep nonlinearity and broadband stochastic frequency noises during the laser chirp are efficiently suppressed by a composite feedback loop. The residual frequency error relative to a perfect linear chirp is shown to be about 89 kHz for a laser chirp of 50 GHz in 100 ms, compared with 44 MHz with the loop open. The broadband frequency noise suppression of the frequency-swept laser greatly improves its coherence, leading to a higher signal-to-noise ratio and a significantly extended measurement range in FMCW reflectometry ranging. We demonstrate a 2 mm transform-limited spatial resolution at a range window of 50 m and a 17.5 cm spatial resolution at an extended measurement range of 750 m, which is about 15 times the intrinsic laser round-trip coherence length.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source

Jie Qin, Ling Zhang, Weilin Xie, Ran Cheng, Zhangweiyi Liu, Wei Wei, and Yi Dong
Opt. Express 27(14) 19359-19368 (2019)

Fourier transform-limited optical frequency-modulated continuous-wave interferometry over several tens of laser coherence lengths

Weilin Xie, Qian Zhou, Fabien Bretenaker, Zongyang Xia, Hongxiao Shi, Jie Qin, Yi Dong, and Weisheng Hu
Opt. Lett. 41(13) 2962-2965 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved