Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations

Not Accessible

Your library or personal account may give you access

Abstract

We present a mutual compensation scheme of three phase fluctuations, originating from the residual amplitude modulation (RAM) in the phase modulation process, in the bright squeezed light generation system. The influence of the RAM on each locking loop is harmonized by using one electro-optic modulator (EOM), and the direction of the phase fluctuation is manipulated by positioning the photodetector (PD) that extracts the error signal before or after the optical parametric amplifier (OPA). Therefore a bright squeezed light with non-classical noise reduction of π is obtained. By fitting the squeezing and antisqueezing measurement results, we confirm that the total phase fluctuation of the system is around 3.1 mrad. The fluctuation of the noise suppression is 0.2 dB for 3 h.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise

Xiaocong Sun, Yajun Wang, Long Tian, Shaoping Shi, Yaohui Zheng, and Kunchi Peng
Opt. Lett. 44(7) 1789-1792 (2019)

Reduction of zero baseline drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation

Zhixiu Li, Weiguang Ma, Wenhai Yang, Yajun Wang, and Yaohui Zheng
Opt. Lett. 41(14) 3331-3334 (2016)

Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB

Moritz Mehmet, Stefan Ast, Tobias Eberle, Sebastian Steinlechner, Henning Vahlbruch, and Roman Schnabel
Opt. Express 19(25) 25763-25772 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.