Abstract
We study errors that occur in geometry and phase reconstruction when using scalar diffraction theory in line gratings with periods below 10 μm. The application of those gratings in so-called computer-generated holograms in high-precision interferometric testing of aspheres and free-form surfaces imposes high demands on the generated phase, leading to error budgets in the range of . Using rigorous simulations as references, we identify the limits where scalar diffraction theory fails to accurately describe grating geometries and identify the significant error mechanisms.
© 2014 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (5)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (3)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription