Abstract
We outline here a new algorithm for evaluating Hankel (Fourier–Bessel) transforms numerically with enhanced speed, accuracy, and efficiency. A nonlinear change of variables is used to convert the one-sided Hankel transform integral into a two-sided cross-correlation integral. This correlation integral is then evaluated on a discrete sampled basis using fast Fourier transforms. The new algorithm offers advantages in speed and substantial advantages in storage requirements over conventional methods for evaluating Hankel transforms with large numbers of points.
© 1977 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (3)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (6)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription