Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Light scattering by an arbitrary particle: a physical reformulation of the coupled dipole method

Not Accessible

Your library or personal account may give you access

Abstract

The coupled dipole model of scattering by an arbitrary particle has been reformulated in terms of internal scattering processes of all orders. This formalism readily permits physical interpretation of observables and provides a rational basis for making computations more efficient. The calculation of scattering parameters can be simplified by appropriately terminating the infinite series at any order as well as by restricting the summations over the dipolar interaction terms within each order. Large particles can be partitioned into segments so that the scattered field is a superposition of the fields from the segments together with fields due to interactions among dipoles in different segments.

© 1987 Optical Society of America

Full Article  |  PDF Article
More Like This
Light scattering by an arbitrary particle: the scattering-order formulation of the coupled-dipole method

Shermila Brito Singham and Craig F. Bohren
J. Opt. Soc. Am. A 5(11) 1867-1872 (1988)

Multidipole formulation of the coupled dipole method for electromagnetic scattering by an arbitrary particle

C. Bourrely, P. Chiappetta, T. Lemaire, and B. Torrésani
J. Opt. Soc. Am. A 9(8) 1336-1340 (1992)

Hybrid method in light scattering by an arbitrary particle

Shermila Brito Singham and Craig F. Bohren
Appl. Opt. 28(3) 517-522 (1989)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.