Abstract
Uncompensated phase errors present in synthetic-aperture-radar data can have a disastrous effect on reconstructed image quality. We present a new iterative algorithm that holds promise of being a robust estimator and corrector for arbitrary phase errors. Our algorithm is similar in many respects to speckle processing methods currently used in optical astronomy. We demonstrate its ability to focus scenes containing large amounts of phase error regardless of the phase-error structure or its source. The algorithm works extremely well in both high and low signal-to-clutter conditions without human intervention.
© 1989 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (4)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (4)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription