Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber

Not Accessible

Your library or personal account may give you access

Abstract

Time-domain reflectometry of spontaneous Brillouin scattering in a single-mode optical fiber is performed with a coherent self-heterodyne detection system containing a recently proposed external frequency translator and a single light-wave source. The light wave is divided into probe and reference light waves. The frequency of the probe light wave is upconverted by the translator by an amount approximately equal to the Brillouin frequency shift. The frequency-converted probe is launched into the fiber and spontaneously Brillouin scattered. As the frequency of the scattered probe is downconverted to near that of the reference light wave, coherent self-heterodyne detection of spontaneous Brillouin scattering becomes possible without having to use a fast-speed detector.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection

Sally M. Maughan, Huai H. Kee, and Trevor P. Newson
Opt. Lett. 26(6) 331-333 (2001)

Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering

Jihong Geng, Sean Staines, Mike Blake, and Shibin Jiang
Appl. Opt. 46(23) 5928-5932 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved