Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical implementation of a constant-time multicomparand bit-parallel magnitude-comparison algorithm using wavelength- and polarization-division multiplexing with application to parallel database processing

Not Accessible

Your library or personal account may give you access

Abstract

We present a word- and bit-parallel magnitude-comparison architecture that permits multiple comparands to be compared with multiple relations in constant time. The proposed magnitude-comparison algorithm uses a novel polarization and wavelength-encoding scheme to achieve a fast, scalable realization. Distinctive features of the proposed architecture include (1) the use of a multiple-wavelength encoding scheme to increase processing parallelism and (2) multiple-comparand word- and bit-parallel comparison with an execution time that is independent of the data or word size.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved