Abstract
We demonstrate a scheme for volume holographic storage based on the features
of shift selectivity of a speckle reference-wave hologram. The proposed recording
method permits more-efficient use of the recording medium and yields greater
storage density than spherical or plane-wave reference beams. Experimental
results of multiple hologram storage and replay in a photorefractive crystal
of iron-doped lithium niobate are presented. The mechanisms of lateral and
longitudinal shift selectivity are described theoretically and shown to agree
with experimental measurements.
© 1999 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (4)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (3)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription