Abstract
The thermal contribution to the nonlinear refractive index of air at was measured with a high-finesse Fabry–Perot cavity and a 500-mW cw laser beam. At room temperature and pressure, the nonlinear refractive-index coefficient of air was found to be for a beam waist radius of 0.23 mm and was found to be independent of the relative humidity. The thermal nonlinearities of , , and were also measured, and it was found that the dominant contribution to air is its content.
© 2000 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (3)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (6)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription