Abstract

The optical absorption of thin-film thermal infrared detectors was calculated as a function of wavelength, pixel size, and area fill factor by use of the finite-difference time-domain (FDTD) method. The results indicate that smaller pixels absorb a significantly higher percentage of incident energy than larger pixels with the same fill factor. A polynomial approximation to the FDTD results was derived for use in system models.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-color thermal detector with thermal chopping for infrared focal-plane arrays

Vladimir N. Leonov and Donald P. Butler
Appl. Opt. 40(16) 2601-2610 (2001)

Enhanced absorption per unit mass for infrared arrays using subwavelength metal–dielectric structures

Avijit Das and Joseph J. Talghader
J. Opt. Soc. Am. B 38(1) 183-193 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics