Abstract
The propagation of an optical pulse in a coupled-resonator optical waveguide may be calculated nonperturbatively to all orders of dispersion, in the conventional tight-binding approximation, even though the dispersion relationship is nonlinear. Working in this framework, we discuss limits of the physical parameters and approximations to the exact formulation that highlight the conditions under which pulse distortion can be minimized. The results are fundamental to the design of coupled-resonator optical waveguides and are also relevant to other applications of the tight-binding method.
© 2002 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (2)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (13)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription