Abstract
We theoretically derive the electric field distribution of an astigmatic Gaussian laser beam after it is focused through a high-aperture objective. We show that astigmatism values that are hard to detect in the collimated laser beam can have a large effect after diffraction-limited focusing. Such astigmatic beams may be frequently encountered in fluorescence correlation measurements and in laser-scanning confocal microscopy. We present experimental measurements of the excitation intensity distribution measured by 3D scanning of single fluorescent molecules immobilized on a glass surface.
© 2005 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (2)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (17)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription