Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rabi oscillation damped by exciton leakage and Auger capture in quantum dots

Not Accessible

Your library or personal account may give you access

Abstract

The decoherence of Rabi oscillation (RO) caused by biexciton, population leakage to the wetting layer (WL), and Auger capture in semiconductor quantum dots is theoretically analyzed with multilevel optical Bloch equations. The corresponding effects on the quality factor of RO are also discussed. We have found that the biexciton effect is relatively trifling, as the pulse duration is longer than 5 ps. The population leakage to the WL leads to a decrease of the RO average even though the damping rate is similar to that observed in the experiment. Auger capture in quantum dots results in RO damping that is consistent with the experimental data, which implies that Auger capture is an important decoherence process in quantum dots.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Sensitivity of quantum-dot semiconductor lasers to optical feedback

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov
Opt. Lett. 29(10) 1072-1074 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.