Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimized multiemitter beams for free-space optical communications through turbulent atmosphere

Not Accessible

Your library or personal account may give you access

Abstract

Using laser beams with less than perfect spatial coherence is an effective way of reducing scintillations in free-space optical communication links. We report a proof-of-principle experiment that quantifies this concept for a particular type of a partially coherent beam. In our scaled model of a free-space optical communication link, the beam is composed of several partially overlapping fundamental Gaussian beams that are mutually incoherent. The turbulent atmosphere is simulated by a random phase screen imprinted with Kolmogorov turbulence. Our experiments show that for both weak-to-intermediate and strong turbulence an optimum separation between the constituent beams exists such that the scintillation index of the optical signal at the detector is minimized. At the minimum, the scintillation reduction factor compared with the case of a single Gaussian beam is substantial, and it is found to grow with the number of constituent beams. For weak-to-intermediate turbulence, our experimental results are in reasonable agreement with calculations based on the Rytov approximation.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Joint optimization of a partially coherent Gaussian beam for free-space optical communication over turbulent channels with pointing errors

It Ee Lee, Zabih Ghassemlooy, Wai Pang Ng, and Mohammad-Ali Khalighi
Opt. Lett. 38(3) 350-352 (2013)

Optimization criterion for initial coherence degree of lasers in free-space optical links through atmospheric turbulence

Chunyi Chen, Huamin Yang, Xin Feng, and Hui Wang
Opt. Lett. 34(4) 419-421 (2009)

Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence

Peng Deng, Mohsen Kavehrad, Zhiwen Liu, Zhou Zhou, and XiuHua Yuan
Opt. Express 21(13) 15213-15229 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.